This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002622 M1053 N0395 #64 Aug 19 2020 15:43:16 %S A002622 1,2,4,7,12,19,29,42,60,83,113,150,197,254,324,408,509,628,769,933, %T A002622 1125,1346,1601,1892,2225,2602,3029,3509,4049,4652,5326,6074,6905, %U A002622 7823,8837,9952,11178,12520,13989,15591,17338,19236,21298,23531,25949,28560,31378,34412 %N A002622 Number of partitions of at most n into at most 5 parts. %D A002622 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002622 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002622 Seiichi Manyama, <a href="/A002622/b002622.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vincenzo Librandi) %H A002622 P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. %H A002622 E. Fix and J. L. Hodges, Jr., <a href="http://projecteuclid.org/euclid.aoms/1177728547">Significance probabilities of the Wilcoxon test</a>, Annals Math. Stat., 26 (1955), 301-312. %H A002622 E. Fix and J. L. Hodges, <a href="/A000601/a000601.pdf">Significance probabilities of the Wilcoxon test</a>, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy] %H A002622 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (2, 0, -1, 0, -1, 0, 0, 2, 0, 0, -1, 0, -1, 0, 2, -1). %F A002622 G.f.: 1/[(1+x^2)*(1-x^3)*(1-x)^4*(1-x^5)*(1+x)^2]. (Corrected Mar 31 2018) %F A002622 a(n)= 2*a(n-1) -a(n-3) -a(n-5) +2*a(n-8) -a(n-11) -a(n-13) +2*a(n-15) -a(n-16). %F A002622 G.f.: 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)). - _Michael Somos_, Apr 24 2014 %F A002622 Euler transform of length 5 sequence [ 2, 1, 1, 1, 1]. - _Michael Somos_, Apr 24 2014 %F A002622 a(n) = a(n-1) + A001401(n). - _Michael Somos_, Apr 24 2014 %F A002622 a(n) = round((n+1)*(6*n^4+234*n^3+3326*n^2+20674*n+50651+675*(-1)^n)/86400). - _Tani Akinari_, May 05 2014 %e A002622 G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 29*x^6 + 42*x^7 + 60*x^8 + ... %e A002622 a(2) = 4 with partitions 0, 1, 2, 1+1. a(3) = 7 with partitions 0, 1, 2, 1+1, 3, 2+1, 1+1+1. - _Michael Somos_, Apr 24 2014 %t A002622 CoefficientList[Series[1/((1 - x)^2 (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Apr 25 2014 *) %t A002622 LinearRecurrence[{2, 0, -1, 0, -1, 0, 0, 2, 0, 0, -1, 0, -1, 0, 2, -1}, {1, 2, 4, 7, 12, 19, 29, 42, 60, 83, 113, 150, 197, 254, 324, 408}, 48] (* _Georg Fischer_, Feb 27 2019 *) %o A002622 (PARI) x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 5, 1-x^i))) \\ _Altug Alkan_, Mar 30 2018 %Y A002622 Cf. A001401 (first differences). Column 5 of A092905. %K A002622 nonn,easy %O A002622 0,2 %A A002622 _N. J. A. Sloane_