This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002682 M3152 N1277 #22 Oct 04 2021 12:37:10 %S A002682 3,45,252,28350,1496880,3405402000,17513496000,7815397590000, %T A002682 5543722023840000,235212205868640000,206559082608278400000, %U A002682 516914104227216696000000,572581776990147724800000 %N A002682 Denominators of coefficients for repeated integration. %D A002682 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002682 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002682 H. E. Salzer, <a href="https://doi.org/10.1002/sapm194928154">Coefficients for repeated integration with central differences</a>, Journal of Mathematics and Physics, 28 (1949), 54-61. %F A002682 a(n) is the denominator of ((n+1)/2)M(n) + (2n+2)M(n+1), where M(n) = (2/(2n+1)!)*Integral_{t=0..1} (t*Product_{k=1..n} (t^2 - k^2)). - _Emeric Deutsch_, Jan 25 2005 %p A002682 M:=n->(2/(2*n+1)!)*int(t*product(t^2-k^2,k=1..n),t=0..1): A:=n->((n+1)/2)*M(n)+(2*n+2)*M(n+1): seq(denom(A(n)),n=0..15); # _Emeric Deutsch_, Jan 25 2005 %t A002682 M[n_] := (2/(2n+1)!) Integrate[t Product[t^2-k^2, {k, 1, n}], {t, 0, 1}]; %t A002682 A[n_] := ((n+1)/2) M[n] + (2n+2) M[n+1]; %t A002682 Table[Denominator[A[n]], {n, 0, 15}] (* _Jean-François Alcover_, Oct 04 2021, after Maple code *) %Y A002682 Cf. A002195, A002196, A002681. %K A002682 nonn,frac %O A002682 0,1 %A A002682 _N. J. A. Sloane_ %E A002682 More terms from _Emeric Deutsch_, Jan 25 2005