This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002683 M4421 N1868 #19 Dec 20 2021 20:56:57 %S A002683 1,-7,37,-199,40321,-5512813,136601407,-32373535937,4039314145093, %T A002683 -377880467185583,123905113265594071,-53834048464836263969, %U A002683 66351862106782030159,-194322297839115779164331,149128127842572749235559291,-25454412383565669030714950177 %N A002683 Numerators of coefficients for repeated integration. %D A002683 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002683 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002683 H. E. Salzer, <a href="https://doi.org/10.1002/sapm194928154">Coefficients for repeated integration with central differences</a>, Journal of Mathematics and Physics, 28 (1949), 54-61. %F A002683 a(n) is the numerator of -(n/2)*M(n) - (2n+2)*M(n+1), where M(n) = (2/(2n+1)!)*Integral_{t=0..1} t*Product_{k=1..n} (t^2 - k^2). - _Emeric Deutsch_, Jan 25 2005 %p A002683 M:=n->(2/(2*n+1)!)*int(t*product(t^2-k^2,k=1..n),t=0..1): B:=n->-(n/2)*M(n)-(2*n+2)*M(n+1): seq(numer(B(n)),n=0..16); # _Emeric Deutsch_, Jan 25 2005 %Y A002683 Cf. A002195, A002196, A002684. %K A002683 sign,frac %O A002683 0,2 %A A002683 _N. J. A. Sloane_ %E A002683 More terms from _Emeric Deutsch_, Jan 25 2005