A002703 Sets with a congruence property.
0, 0, 0, 2, 6, 14, 24, 46, 88, 162, 300, 562, 1056, 1982, 3742, 7082, 13438, 25574, 48768, 93198, 178480, 342392, 657918, 1266202, 2440318, 4709374, 9099504, 17602322, 34087010, 66076414, 128207976, 248983550, 483939976, 941362694, 1832519262, 3569842946, 6958934352
Offset: 3
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alexander Rosa and Štefan Znám, A combinatorial problem in the theory of congruences (Russian with English summary), Mat.-Fys. Casopis Sloven. Akad. Vied 15 (1965) 49-59. [Annotated scanned copy.] This is the sequence k(n) in Table 3. Tables 1 and 2 are A053632 and A178666 respectively.
- Alexander Rosa and Štefan Znám, A remark on a combinatorial problem (Russian with English summary), Mat.-Fyz. Casopis Sloven. Akad. Vied 15 (1965) 313-316. [Annotated scanned copy]
- Zentralblatt, Review of Rosa and Znám, A combinatorial problem in the theory of congruences.
Crossrefs
Programs
-
Maple
A002703 := proc(n) A262568(n)-2 ; end proc: # R. J. Mathar, Oct 21 2015
-
Mathematica
A178666[r_, s_] := SeriesCoefficient[Product[ (1 + x^(2i+1)), {i, 0, Floor[(s-1)/2]}], {x, 0, r}]; kstart[n_, m_] := Ceiling[Binomial[n+1, 2]/m]; kend[n_, m_] := Floor[Binomial[3n+1, 2]/3/m]; A262568[n_] := Module[{s = 2n-1, m = 2n+1, Q=0, vi, k}, For[k = kstart[n, m], k <= kend[n, m], k++, vi = m k - Binomial[n+1, 2]; Q += A178666[vi, s] ]; Q]; a[n_] := A262568[n] - 2; a /@ Range[3, 39] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar in A262568 *)
Extensions
More terms from R. J. Mathar, Oct 21 2015
Comments