cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262570 a(n) = A002704(n)/2.

Original entry on oeis.org

1, 13, 469, 21400, 1065229, 55778797, 3020636341, 167544629317, 9461343754981, 541786421337805, 31372013730812824, 1833216802356228733, 107939805322734748117, 6396432908013911687437, 381139174656828902370421, 22819171231066917509661277
Offset: 0

Views

Author

N. J. A. Sloane, Oct 20 2015

Keywords

Crossrefs

Extensions

More terms from R. J. Mathar, Oct 21 2015

A262583 a(n) = A002704(n)-2.

Original entry on oeis.org

0, 24, 936, 42798, 2130456, 111557592, 6041272680, 335089258632, 18922687509960, 1083572842675608, 62744027461625646, 3666433604712457464, 215879610645469496232, 12792865816027823374872, 762278349313657804740840, 45638342462133835019322552
Offset: 0

Views

Author

N. J. A. Sloane, Oct 20 2015

Keywords

Crossrefs

Extensions

More terms from R. J. Mathar, Oct 21 2015
a(15) corrected by Georg Fischer, Jun 27 2020

A262584 a(n) = (A002704(n) - 2)/2.

Original entry on oeis.org

0, 12, 468, 21399, 1065228, 55778796, 3020636340, 167544629316, 9461343754980, 541786421337804, 31372013730812823, 1833216802356228732, 107939805322734748116, 6396432908013911687436, 381139174656828902370420
Offset: 0

Views

Author

N. J. A. Sloane, Oct 20 2015

Keywords

Crossrefs

Extensions

More terms from R. J. Mathar, Oct 21 2015

A002703 Sets with a congruence property.

Original entry on oeis.org

0, 0, 0, 2, 6, 14, 24, 46, 88, 162, 300, 562, 1056, 1982, 3742, 7082, 13438, 25574, 48768, 93198, 178480, 342392, 657918, 1266202, 2440318, 4709374, 9099504, 17602322, 34087010, 66076414, 128207976, 248983550, 483939976, 941362694, 1832519262, 3569842946, 6958934352
Offset: 3

Views

Author

Keywords

Comments

a(n) is the sequence k(n) in Table 3 of the first 1965 paper. - N. J. A. Sloane, Oct 20 2015
See English summary at the end of the first 1965 paper, which is repeated in the Zentralblatt review. - Jonathan Sondow, Nov 02 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A262567, A262568, A262569 for other versions.
Tables 1 and 2 of the first Rosa-Znám 1965 paper are A053632 and A178666 respectively.

Programs

  • Maple
    A002703 := proc(n)
        A262568(n)-2 ;
    end proc: # R. J. Mathar, Oct 21 2015
  • Mathematica
    A178666[r_, s_] := SeriesCoefficient[Product[ (1 + x^(2i+1)), {i, 0, Floor[(s-1)/2]}], {x, 0, r}];
    kstart[n_, m_] := Ceiling[Binomial[n+1, 2]/m];
    kend[n_, m_] := Floor[Binomial[3n+1, 2]/3/m];
    A262568[n_] := Module[{s = 2n-1, m = 2n+1, Q=0, vi, k}, For[k = kstart[n, m], k <= kend[n, m], k++, vi = m k - Binomial[n+1, 2]; Q += A178666[vi, s] ]; Q];
    a[n_] := A262568[n] - 2;
    a /@ Range[3, 39] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar in A262568 *)

Extensions

More terms from R. J. Mathar, Oct 21 2015

A002705 Sets with a congruence property.

Original entry on oeis.org

0, 4, 40, 468, 5828, 76260, 1032444, 14316584, 202116108, 2893451652, 41886157564, 611902123284, 9007199254740, 133439988963012, 1987795697598012, 29752813022112180, 447193795726343004, 6746237832670921768, 102105221251235572188
Offset: 0

Views

Author

Keywords

Comments

The values for k=1, Q(n,1) in table 1 on page 315 for n = 3,5,7,9,... are 0, 2, 6, 18, 62, 210, 728, 2570, 9198, 33288, 121574, 447394, 1657008, 6170930, 23091222, 86767016, 327235610, 1238188770, 4698767640 ... (see A262590), - R. J. Mathar, Oct 21 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    p := proc(r,s,k)
        option remember;
        if r = 0 then
            1;
        elif r < 0 then
            0;
        elif s < 0 then
            0;
        elif igcd(s,2*k+1) > 1 then
            procname(r,s-1,k) ;
        else
            procname(r,s-1,k)+procname(r-s,s-1,k) ;
        end if;
    end proc:
    Q := proc(n,k)
        local q,knrat,alpha,m ;
        q := 0 ;
        knrat := (2*k*n^2+n^2+k^2)/4/k ;
        if type(knrat,'integer') then
            for alpha from 0 to knrat do
                m := 2*n+n/k ;
                if modp(2*alpha,m) = modp(knrat,m) then
                    q := q+p(alpha,n+(n-k)/2/k,k) ;
                end if;
            end do:
        end if;
        q ;
    end proc:
    A002705 := proc(n)
        nloc := 2+4*n ;
        Q(nloc,2) ;
    end proc: # R. J. Mathar, Oct 21 2015
  • Mathematica
    p[r_, s_, k_] := p[r, s, k] = Which[r == 0, 1, r < 0, 0, s < 0, 0, GCD[s, 2 k + 1] > 1, p[r, s - 1, k], True, p[r, s - 1, k] + p[r - s, s - 1, k]];
    Q[n_, k_] := Module[{q = 0, knrat, alpha, m}, knrat = (2 k n^2 + n^2 + k^2)/4/k; If[IntegerQ[knrat], For[alpha = 0, alpha <= knrat, alpha++, m = 2 n + n/k; If[Mod[2 alpha, m] == Mod[knrat, m], q += p[alpha, n + (n - k)/2/k, k]]]]; q];
    a[n_] := Q[4 n + 2, 2];
    a /@ Range[0, 18] (* Jean-François Alcover, Mar 27 2020, after R. J. Mathar *)

Formula

See Maple code!

Extensions

More terms from R. J. Mathar, Oct 21 2015
Showing 1-5 of 5 results.