A002705 Sets with a congruence property.
0, 4, 40, 468, 5828, 76260, 1032444, 14316584, 202116108, 2893451652, 41886157564, 611902123284, 9007199254740, 133439988963012, 1987795697598012, 29752813022112180, 447193795726343004, 6746237832670921768, 102105221251235572188
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alexander Rosa and Štefan Znám, A combinatorial problem in the theory of congruences (Russian with English summary), Mat.-Fys. Casopis Sloven. Akad. Vied 15 1965 49-59. [Annotated scanned copy.]
- Alexander Rosa and Štefan Znám, A remark on a combinatorial problem (Russian with English summary), Mat.-Fyz. Casopis Sloven. Akad. Vied 15 1965 313-316. [Annotated scanned copy] See Table 2.
Programs
-
Maple
p := proc(r,s,k) option remember; if r = 0 then 1; elif r < 0 then 0; elif s < 0 then 0; elif igcd(s,2*k+1) > 1 then procname(r,s-1,k) ; else procname(r,s-1,k)+procname(r-s,s-1,k) ; end if; end proc: Q := proc(n,k) local q,knrat,alpha,m ; q := 0 ; knrat := (2*k*n^2+n^2+k^2)/4/k ; if type(knrat,'integer') then for alpha from 0 to knrat do m := 2*n+n/k ; if modp(2*alpha,m) = modp(knrat,m) then q := q+p(alpha,n+(n-k)/2/k,k) ; end if; end do: end if; q ; end proc: A002705 := proc(n) nloc := 2+4*n ; Q(nloc,2) ; end proc: # R. J. Mathar, Oct 21 2015
-
Mathematica
p[r_, s_, k_] := p[r, s, k] = Which[r == 0, 1, r < 0, 0, s < 0, 0, GCD[s, 2 k + 1] > 1, p[r, s - 1, k], True, p[r, s - 1, k] + p[r - s, s - 1, k]]; Q[n_, k_] := Module[{q = 0, knrat, alpha, m}, knrat = (2 k n^2 + n^2 + k^2)/4/k; If[IntegerQ[knrat], For[alpha = 0, alpha <= knrat, alpha++, m = 2 n + n/k; If[Mod[2 alpha, m] == Mod[knrat, m], q += p[alpha, n + (n - k)/2/k, k]]]]; q]; a[n_] := Q[4 n + 2, 2]; a /@ Range[0, 18] (* Jean-François Alcover, Mar 27 2020, after R. J. Mathar *)
Formula
See Maple code!
Extensions
More terms from R. J. Mathar, Oct 21 2015
Comments