cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002715 An infinite coprime sequence defined by recursion.

This page as a plain text file.
%I A002715 M2683 N1073 #35 Dec 19 2021 10:00:58
%S A002715 3,7,23,47,1103,2207,2435423,4870847,11862575248703,23725150497407,
%T A002715 281441383062305809756861823,562882766124611619513723647,
%U A002715 158418504200047111075388369241884118003210485743490303
%N A002715 An infinite coprime sequence defined by recursion.
%C A002715 Every term is relatively prime to all others.
%D A002715 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002715 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002715 Vincenzo Librandi, <a href="/A002715/b002715.txt">Table of n, a(n) for n = 0..21</a>
%H A002715 A. W. F. Edwards, <a href="https://www.jstor.org/stable/3611702">Infinite coprime sequences</a>, Math. Gaz., 48 (1964), 416-422.
%H A002715 A. W. F. Edwards, <a href="/A002715/a002715.pdf">Infinite coprime sequences</a>, Math. Gaz., 48 (1964), 416-422. [Annotated scanned copy]
%H A002715 R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018.
%F A002715 a(2n+1) = 2*a(2n)+1, a(2n) = (a(2n-1)^2-3)/2, with a(0)=3.
%t A002715 a[n_?OddQ] := a[n] = 2*a[n-1] + 1; a[n_?EvenQ] := a[n] = (a[n-1]^2 - 3)/2; a[0] = 3; Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Jan 25 2013 *)
%o A002715 (PARI) a(n)=if(n<1,3*(n==0),if(n%2,2*a(n-1)+1,(a(n-1)^2-3)/2))
%Y A002715 Cf. A001685, A003686, A064526.
%K A002715 nonn
%O A002715 0,1
%A A002715 _N. J. A. Sloane_
%E A002715 More terms from _Jeffrey Shallit_
%E A002715 Edited by _Michael Somos_, Feb 01 2004