This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002716 M2488 N0986 #36 Oct 20 2023 09:23:04 %S A002716 3,5,13,17,241,257,65281,65537,4294901761,4294967297, %T A002716 18446744069414584321,18446744073709551617, %U A002716 340282366920938463444927863358058659841 %N A002716 An infinite coprime sequence defined by recursion. %C A002716 Every term is relatively prime to all others. - _Michael Somos_, Feb 01 2004 %D A002716 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002716 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002716 A. W. F. Edwards, <a href="https://www.jstor.org/stable/3611702">Infinite coprime sequences</a>, Math. Gaz., 48 (1964), 416-422. %H A002716 A. W. F. Edwards, <a href="/A002715/a002715.pdf">Infinite coprime sequences</a>, Math. Gaz., 48 (1964), 416-422. [Annotated scanned copy] %H A002716 R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018. %F A002716 a(2*n + 1) = a(2*n) + a(2*n - 1) - 1, a(2*n) = a(2*n - 1)^2 - 3 * a(2*n - 1) + 3, a(0) = 3, a(1) = 5. - _Michael Somos_, Feb 01 2004 %F A002716 Conjecture: a(2n+1)=A001146(n+1)+1. - _R. J. Mathar_, May 15 2007 %F A002716 a(2*n) = A220294(n). a(2*n + 1) = A000215(n+1). - _Michael Somos_, Dec 10 2012 %t A002716 a[0] = 3; a[1] = 5; %t A002716 a[n_] := a[n] = If[OddQ[n], a[n-1] + a[n-2] - 1, a[n-1]^2 - 3*a[n-1] + 3]; %t A002716 Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Aug 16 2018, after _Michel Somos_ *) %o A002716 (PARI) {a(n) = if( n<2, 3 * (n>=0) + 2 * (n>0), if( n%2, a(n-1) + a(n-2) - 1, a(n-1)^2 - 3 * a(n-1) + 3))} /* _Michael Somos_, Feb 01 2004 */ %Y A002716 Cf. A000215, A001685, A002715, A003686, A064526, A220294. %K A002716 nonn %O A002716 0,1 %A A002716 _N. J. A. Sloane_ %E A002716 More terms from _Jeffrey Shallit_ %E A002716 Edited by _Michael Somos_, Feb 01 2004