cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002730 Number of equivalence classes of binary sequences of primitive period n.

This page as a plain text file.
%I A002730 M0114 N0044 #27 Jan 29 2022 01:02:47
%S A002730 2,1,2,3,4,8,8,18,18,38,28,142,72,234,360,669,520,2606,1608,7338,8856,
%T A002730 19370,16768,94308,67556,216200,277512,815310,662368,4499852,2311468,
%U A002730 8465496,13045076,31592762,40937592,159769394,103197488,401912086
%N A002730 Number of equivalence classes of binary sequences of primitive period n.
%C A002730 The number of equivalence classes of primitive sequences of period p, taking values in a set with b elements, is given by: N'(p) = sum_{d|p} mobius(p/d)*N(d) where N denotes the number of equivalence classes in the set of all sequences with period p, taking b values (see A002729). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
%D A002730 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002730 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A002730 R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.
%H A002730 Vincenzo Librandi, <a href="/A002730/b002730.txt">Table of n, a(n) for n = 1..50</a>
%H A002730 <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>
%F A002730 Reference gives formula.
%p A002730 with(numtheory): E:=proc(k,L) if(L=1) then RETURN(1) else RETURN(order(k,L)) fi end; M:=proc(k,L) local s,EkL: EkL:=E(k,L): if(k>1) then s:=(k^EkL-1)/(k-1): RETURN(L*EkL/igcd(L,s)) else RETURN(L*EkL/igcd(L,EkL)) fi end; C:=proc(k,t,p) local u: RETURN(add(M(k,p/igcd(p,u*(k-1)+t))^(-1),u=0..p-1)) :end; N:=proc(p) options remember: local s,t,k: if(p=1) then RETURN(2) fi: s:=0: for t from 0 to p-1 do for k from 1 to p-1 do if igcd(p,k)=1 then s:=s+2^C(k,t,p) fi od od: RETURN(s/(p*phi(p))):end; Nprimitive:=proc(p) options remember: local d: RETURN(add(mobius(p/d)*N(d),d=divisors(p))): end; seq(Nprimitive(p),p=1..51); (Pab Ter)
%t A002730 max = 38; m[k_, n_] := (s = 1; Do[ If[ Mod[s, n] == 0, Return[e], s = s + k^e ] , {e, 1, max}]); c[k_, t_, n_] := Sum[ m[k, n/GCD[n, u*(k-1) + t]]^(-1), {u, 0, n-1}]; (* b = A002729 *) b[n_] := b[n] = (s = 0; Do[ If[ GCD[n, k] == 1 , s = s + 2^c[k, t, n]] , {k, 1, n-1}, {t, 0, n-1}]; s / (n*EulerPhi[n]) ); b[0] = 1; b[1] = 2; a[n_] := Sum[ MoebiusMu[n/d]*b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, max}] (* _Jean-François Alcover_, Dec 06 2011, after Maple *)
%Y A002730 Cf. A002729.
%K A002730 nonn,easy,nice
%O A002730 1,1
%A A002730 _N. J. A. Sloane_
%E A002730 More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005