cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002764 Number of bipartite partitions.

This page as a plain text file.
%I A002764 M4359 N1827 #19 Oct 20 2023 10:06:05
%S A002764 7,18,44,88,169,296,507,824,1314,2029,3083,4578,6714,9676,13795,19408,
%T A002764 27053,37302,51029,69180,93139,124447,165259,218021,286068,373207,
%U A002764 484512,625845,804840,1030369,1313823,1668466,2111101,2661365,3343811,4187191
%N A002764 Number of bipartite partitions.
%D A002764 M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 11.
%D A002764 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002764 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002764 M. S. Cheema and H. Gupta, <a href="/A002755/a002755.pdf">Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956</a>. (Annotated scanned pages from, plus a review)
%p A002764 nmax := 35:
%p A002764 gf := (n, m, k) -> 1/(product(product(1-x^r*y^t, t=k..m), r=0..n) * product(1-x^s, s=1..n)):
%p A002764 seq(coeff(coeff(series(series(gf(nmax, 8, 2), x, nmax+1), y, 9), y, 8), x, n), n=0..nmax); # _Sean A. Irvine_, Aug 14 2014
%K A002764 nonn
%O A002764 0,1
%A A002764 _N. J. A. Sloane_
%E A002764 More terms from _Sean A. Irvine_, Aug 14 2014