cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002768 Number of bipartite partitions.

This page as a plain text file.
%I A002768 M3831 N1571 #19 Oct 20 2023 10:09:10
%S A002768 5,13,30,59,109,187,312,497,775,1176,1753,2561,3694,5245,7366,10223,
%T A002768 14056,19137,25853,34637,46092,60910,80009,104462,135674,175274
%N A002768 Number of bipartite partitions.
%D A002768 M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 32.
%D A002768 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002768 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002768 M. S. Cheema and H. Gupta, <a href="/A002755/a002755.pdf">Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956</a>. (Annotated scanned pages from, plus a review)
%p A002768 nmax := 20:
%p A002768 gf := (n, m, k) -> 1/(product(product(1-x^r*y^t, t=k..m), r=0..n) * product(1-x^s, s=1..n)):
%p A002768 seq(coeff(coeff(series(series(gf(nmax, 15, 5), x, nmax+1), y, 16), y, 15), x, n), n=0..nmax); # _Sean A. Irvine_, Aug 15 2014
%K A002768 nonn
%O A002768 0,1
%A A002768 _N. J. A. Sloane_