This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002788 M1679 N0661 #27 Feb 16 2025 08:32:26 %S A002788 1,1,2,6,26,135,875,6749,60601,618111,7033090 %N A002788 Idempotent semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator). %C A002788 An idempotent semigroup is one whose elements are all idempotents. %D A002788 R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23. %D A002788 R. J. Plemmons, Construction and analysis of non-equivalent finite semigroups, pp. 223-228 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. %D A002788 S. Satoh, K. Yama and M. Tokizawa, Semigroups of order 8; Semigroup Forum 49, 1994. %D A002788 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002788 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002788 Andreas Distler, <a href="http://hdl.handle.net/10023/945">Classification and Enumeration of Finite Semigroups</a>, A Thesis Submitted for the Degree of PhD, University of St Andrews (2010). %H A002788 R. J. Plemmons, <a href="/A001423/a001423_2.pdf">There are 15973 semigroups of order 6</a> (annotated and scanned copy) %H A002788 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Semigroup.html">Semigroup.</a> %H A002788 <a href="/index/Se#semigroups">Index entries for sequences related to semigroups</a> %Y A002788 Cf. A001423. Main diagonal of A058123. %K A002788 nonn,nice,hard %O A002788 0,3 %A A002788 _N. J. A. Sloane_ %E A002788 Additional reference and comments from Michael Somos %E A002788 a(7) term from _Christian G. Bower_, Feb 19 2001 %E A002788 a(8) (from the Satoh et al. reference) sent by Tom Kelsey (tom(AT)cs.st-and.ac.uk), Jun 17 2008 %E A002788 a(9)-a(10) from _Andreas Distler_, Jan 12 2011