This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002796 M0474 N0175 #69 Sep 08 2022 08:44:31 %S A002796 1,2,3,4,5,6,7,8,9,10,11,12,15,20,22,24,30,33,36,40,44,48,50,55,60,66, %T A002796 70,77,80,88,90,99,100,101,102,104,105,110,111,112,115,120,122,124, %U A002796 126,128,132,135,140,144,150,155,162,168,175,184,200,202,204,208,210,212 %N A002796 Numbers that are divisible by each nonzero digit. %C A002796 If n is a member so is 10*n. Also all repunits are members. - _Robert G. Wilson v_, Apr 12 2015 %C A002796 The repdigits are also members because they're always the repunit number of the same length multiplied by the digit being repeated. - _Eric Fox_, Sep 02 2019 %C A002796 The number of terms < 10^k: 9, 32, 137, 751, 4577, 29950, 207197, 1495637, ... . - _Robert G. Wilson v_, Apr 13 2015 %C A002796 Includes all multiples of 2520. - _Robert Israel_, Apr 15 2015 %C A002796 For n >= 10: A067458(a(n)) = 0. - _Reinhard Zumkeller_, Sep 24 2015 %D A002796 Lindon, Visible factor numbers, J. Rec. Math., 1 (1968), 217. %D A002796 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002796 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002796 T. D. Noe, <a href="/A002796/b002796.txt">Table of n, a(n) for n = 1..2000</a> %H A002796 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>. %F A002796 a(n) ~ 2520*n. - _Charles R Greathouse IV_, Feb 13 2017 %p A002796 select(t -> t mod ilcm(op(convert(convert(t,base,10),set) minus {0})) = 0, [$1..1000]); # _Robert Israel_, Apr 15 2015 %t A002796 dQ[n_]:=Module[{nzidn=DeleteCases[IntegerDigits[n],0]},And@@Divisible[n, nzidn]]; Select[Range[250],dQ] (* _Harvey P. Dale_, Dec 13 2011 *) %o A002796 (PARI) is(n)=my(v=vecsort(eval(Vec(Str(n))),,8));for(i=1+(v[1]==0), #v, if(n%v[i],return(0)));1 \\ _Charles R Greathouse IV_, Apr 17 2012 %o A002796 (Haskell) %o A002796 import Data.List (nub, sort); import Data.Char (digitToInt) %o A002796 a002796 n = a002796_list !! (n-1) %o A002796 a002796_list = filter f [1..] where %o A002796 f x = all ((== 0) . mod x) ds where %o A002796 ds = map digitToInt (if c == '0' then cs else cs') %o A002796 cs'@(c:cs) = nub $ sort $ show x %o A002796 -- _Reinhard Zumkeller_, Jan 01 2014 %o A002796 (Magma) sol:=[];for k in [1..220] do a:=Set(Intseq(k)) diff {0}; if #[c:c in a|IsIntegral(k/c)] eq #a then; Append(~sol,k); end if; end for; sol; // _Marius A. Burtea_, Sep 09 2019 %o A002796 (Python) %o A002796 A002796_list = [] %o A002796 for i in range(1,10**5): %o A002796 for d in set(str(i)): %o A002796 if d != '0' and i % int(d): %o A002796 break %o A002796 else: %o A002796 A002796_list.append(i) # _Chai Wah Wu_, Mar 26 2021 %Y A002796 Cf. A007602, A034838, A237851. %Y A002796 Cf. A171492 (complement). %Y A002796 Cf. A067458. %K A002796 nonn,base,easy,nice %O A002796 1,2 %A A002796 _N. J. A. Sloane_ %E A002796 More terms from _Henry Bottomley_, Jun 06 2000