This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002821 M2437 N0964 #33 Sep 02 2024 08:36:43 %S A002821 0,1,3,5,8,11,15,19,23,27,32,36,42,47,52,58,64,70,76,83,89,96,103,110, %T A002821 118,125,133,140,148,156,164,173,181,190,198,207,216,225,234,244,253, %U A002821 263,272,282,292,302,312,322,333,343,354,364,375,386,397 %N A002821 a(n) = nearest integer to n^(3/2). %D A002821 M. Boll, Tables Numériques Universelles. Dunod, Paris, 1947, p. 46. %D A002821 M. Hall, Jr., The Diophantine equation x^3-y^2=k, pp. 173-198 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971. %D A002821 A. V. Lebedev and R. M. Fedorova, A Guide to Mathematical Tables. Pergamon, Oxford, 1960, p. 17. %D A002821 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002821 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002821 T. D. Noe, <a href="/A002821/b002821.txt">Table of n, a(n) for n = 0..1000</a> %F A002821 a(n) = floor(n^(3/2) + 1/2). - _Ridouane Oudra_, Nov 13 2019 %F A002821 a(n) = sqrt(A077118(n)). - _Chai Wah Wu_, Jul 30 2022 %p A002821 A002821 := proc(n) %p A002821 round(n^(3/2)) ; %p A002821 end proc: %p A002821 seq(A002821(n),n=0..100) ; %t A002821 t[n_]:=Module[{flt=Floor[n],cet=Ceiling[n]},If[n-flt<cet-n,flt, cet]]; t/@(Range[0,60]^((3/2))) (* _Harvey P. Dale_, May 12 2011 *) %o A002821 (Haskell) %o A002821 a002821 = round . sqrt . fromIntegral . (^ 3) %o A002821 -- _Reinhard Zumkeller_, Jul 11 2014 %o A002821 (Python) %o A002821 from math import isqrt %o A002821 def A002821(n): return (m:=isqrt(k:=n**3))+int((k-m*(m+1)<<2)>=1) # _Chai Wah Wu_, Jul 30 2022 %Y A002821 Cf. A000093, A077118. %K A002821 nonn,easy,nice %O A002821 0,3 %A A002821 _N. J. A. Sloane_