cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002829 Number of trivalent (or cubic) labeled graphs with 2n nodes.

This page as a plain text file.
%I A002829 M5346 N2324 #120 Apr 15 2025 08:29:00
%S A002829 1,0,1,70,19355,11180820,11555272575,19506631814670,50262958713792825,
%T A002829 187747837889699887800,976273961160363172131825,
%U A002829 6840300875426184026353242750,62870315446244013091262178375075,741227949070136911068308523257857500
%N A002829 Number of trivalent (or cubic) labeled graphs with 2n nodes.
%D A002829 Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
%D A002829 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
%D A002829 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
%D A002829 R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
%D A002829 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
%D A002829 R. W. Robinson, Computer print-out, no date. Gives first 30 terms.
%D A002829 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002829 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002829 Alois P. Heinz, <a href="/A002829/b002829.txt">Table of n, a(n) for n = 0..160</a> (first 31 terms from R. W. Robinson)
%H A002829 F. Chyzak, M. Mishna and B. Salvy, <a href="https://fpsac-archive.github.io/FPSAC02/ARTICLES/Chyzak.pdf">Effective D-Finite Symmetric Functions</a>, FPSAC '02 (2002) # 19.12, see Maple output prior to the References.
%H A002829 Élie de Panafieu, <a href="https://arxiv.org/abs/2408.12459">Asymptotic expansion of regular and connected regular graphs</a>, arXiv:2408.12459 [math.CO], 2024. See p. 9.
%H A002829 Oleg Evnin and Weerawit Horinouchi, <a href="https://arxiv.org/abs/2403.04242">A Gaussian integral that counts regular graphs</a>, arXiv:2403.04242 [cond-mat.stat-mech], 2024. See p. 12.
%H A002829 I. P. Goulden and D. M. Jackson, <a href="http://dx.doi.org/10.1137/0607007">Labelled graphs with small vertex degrees and P-recursiveness</a>, SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60-66. MR0819706 (87k:05093)
%H A002829 I. P. Goulden, D. M. Jackson, and J. W. Reilly, <a href="http://dx.doi.org/10.1137/0604019">The Hammond series of a symmetric function and its application to P-recursiveness</a>, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 179-193.
%H A002829 Atabey Kaygun, <a href="https://arxiv.org/abs/2101.02299">Enumerating Labeled Graphs that Realize a Fixed Degree Sequence</a>, arXiv:2101.02299 [math.CO], 2021.
%H A002829 Igor Pak, <a href="https://arxiv.org/abs/1803.06636">Complexity problems in enumerative combinatorics</a>, arXiv:1803.06636 [math.CO], 2018.
%H A002829 R. C. Read, <a href="/A002831/a002831.pdf">Letter to N. J. A. Sloane, Feb 04 1971</a> (gives initial terms of this sequence)
%H A002829 R. W. Robinson, <a href="/A002829/a002829.pdf">Cubic labeled graphs, computer print-out, n.d.</a>
%H A002829 N. C. Wormald, <a href="http://dx.doi.org/10.1112/jlms/s2-20.1.1">Enumeration of labelled graphs II: cubic graphs with a given connectivity</a>, J. Lond Math Soc s2-20 (1979) 1-7, eq. (2.6).
%F A002829 From _Vladeta Jovovic_, Mar 25 2001: (Start)
%F A002829 E.g.f. f(x) = Sum_{n >= 0} a(2 * n) * x^n/(2 * n)! satisfies differential equation 6 * x^2 * (-x^2 - 2 * x + 2) * (d^2/dx^2)f(x) - (x^5 + 6 * x^4 + 6 * x^3 - 32 * x + 8) * (d/dx)f(x) + (x/6) * (-x^2 - 2 * x + 2)^2 * f(x) = 0.
%F A002829 Recurrence: a(2 * n) = (2 * n)!/n! * v(n) where 48 * v(n) + (-72 * n^2 + 24 * n + 48) * v(n - 1) + (72 * n^3 - 432 * n^2 + 788 * n - 428) * v(n - 2) + (36 * n^4 - 324 * n^3 + 1052 * n^2 - 1428 * n + 664) * v(n - 3) + (36 * n^4 - 360 * n^3 + 1260 * n^2 - 1800 * n + 864) * v(n - 4) + (6 * n^5 - 94 * n^4 + 550 * n^3 - 1490 * n^2 + 1844 * n - 816) * v(n - 5) + (-n^5 + 15 * n^4 - 85 * n^3 + 225 * n^2 - 274 * n + 120) * v(n - 6) = 0. (End)
%F A002829 a(n) = Sum_{i=0..2*n} Sum_{k=0..min(floor((3*n-i)/3), floor((2*n-i)/2))} Sum_{j=0..min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2))} ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!). - _Shanzhen Gao_, Jun 05 2009
%F A002829 E.g.f.: hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2))*exp(-log(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1). Multiply x^i by (2*i)! to get the generating function. - _Mark van Hoeij_, Nov 07 2011
%F A002829 From _Vaclav Kotesovec_, Mar 11 2014: (Start)
%F A002829 D-finite with recurrence: 3*(3*n-7)*(3*n-4)*a(n) = 9*(n-1)*(2*n-1)*(3*n-7)*(3*n^2 - 4*n + 2)*a(n-1) + (n-1)*(2*n-3)*(2*n-1)*(108*n^3 - 441*n^2 + 501*n - 104)*a(n-2) + 2*(n-2)*(n-1)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-1)*(9*n^2 - 42*n + 43)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(2*n-7)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-4)*(3*n-1)*a(n-4).
%F A002829 a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n+2). (End)
%p A002829 From _R. J. Mathar_, Oct 31 2010: (Start)
%p A002829 A002829aux := proc(i) local a,j,k ; a := 0 ; for j from 0 to i do for k from 0 to 2*(i-j) do a := a+(-1)^(j+k)/j!*doublefactorial(2*i+2*k-1)/3^k/k!/(2*i-2*j-k)! ; end do: end do: a*3^i/2^i ; end proc:
%p A002829 A002829 := proc(n) (2*n)!/6^n*add( A002829aux(i)/(n-i)!,i=0..n) ; end proc: seq(A002829(n),n=0..6) ; (End)
%p A002829 egf := hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2)) * exp(-ln(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1):
%p A002829 ser := convert(series(egf,x=0,30),polynom):
%p A002829 seq(coeff(ser,x,i) * (2*i)!, i=0..degree(ser)); # _Mark van Hoeij_, Nov 07 2011
%t A002829 Flatten[{1,RecurrenceTable[{2 (-3+n) (-2+n) (-1+n) (-7+2 n) (-5+2 n) (-3+2 n) (-1+2 n) (-4+3 n) (-1+3 n) a[-4+n]-2 (-2+n) (-1+n) (-5+2 n) (-3+2 n) (-1+2 n) (-1+3 n) (43-42 n+9 n^2) a[-3+n]-(-1+n) (-3+2 n) (-1+2 n) (-104+501 n-441 n^2+108 n^3) a[-2+n]-9 (-1+n) (-1+2 n) (-7+3 n) (2-4 n+3 n^2) a[-1+n]+3 (-7+3 n) (-4+3 n) a[n]==0,a[1]==0,a[2]==1,a[3]==70,a[4]==19355},a,{n,1,15}]}] (* _Vaclav Kotesovec_, Mar 11 2014 *)
%t A002829 terms = 14;
%t A002829 egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[ 1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
%t A002829 CoefficientList[egf, x] (2 Range[0, terms-1])! (* _Jean-François Alcover_, Nov 23 2018, after _Mark van Hoeij_ *)
%o A002829 (PARI) a(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ _Michel Marcus_, Jan 18 2018
%Y A002829 A diagonal of A059441. Cf. A005814.
%Y A002829 See A004109 for connected graphs of this type.
%K A002829 nonn
%O A002829 0,4
%A A002829 _N. J. A. Sloane_
%E A002829 More terms from _Vladeta Jovovic_, Mar 25 2001