Original entry on oeis.org
1, 0, 1, 2, 0, 2, 5, 2, 0, 3, 12, 5, 4, 0, 5, 24, 12, 10, 6, 0, 7, 56, 24, 24, 15, 10, 0, 11, 113, 56, 48, 36, 25, 14, 0, 15, 248, 113, 112, 72, 60, 35, 22, 0, 22, 503, 248, 226, 168, 120, 84, 55, 30, 0, 30
Offset: 0
First few rows of the triangle =
1;
0, 1;
2, 0, 2;
5, 2, 0, 3;
12, 5, 4, 0, 5;
24, 12, 10, 6, 0, 7;
56, 24, 24, 15, 10, 0, 11;
113, 56, 48, 36, 25, 14, 0, 15;
248, 113, 112, 72, 60, 35, 22, 0, 22;
503, 248, 226, 168, 120, 84, 55, 30, 0, 30;
...
Example: row 4 = (12, 5, 4, 0, 5), sum = 26 = A000293(4).
A000293
a(n) = number of solid (i.e., three-dimensional) partitions of n.
Original entry on oeis.org
1, 1, 4, 10, 26, 59, 140, 307, 684, 1464, 3122, 6500, 13426, 27248, 54804, 108802, 214071, 416849, 805124, 1541637, 2930329, 5528733, 10362312, 19295226, 35713454, 65715094, 120256653, 218893580, 396418699, 714399381, 1281403841, 2287986987, 4067428375, 7200210523, 12693890803, 22290727268, 38993410516, 67959010130, 118016656268, 204233654229, 352245710866, 605538866862, 1037668522922, 1772700955975, 3019333854177, 5127694484375, 8683676638832, 14665233966068, 24700752691832, 41495176877972, 69531305679518
Offset: 0
Examples for n=2 and n=3.
a(2) = 4: 2; 11 where the first 1 is at the origin and the second 1 is in the x, y or z direction.
a(3) = 10: 3; 21 where the 2 is at the origin and the 1 is on the x, y or z axis; 111 (a row of 3 ones on the x, y or z axes); and three 1's with one 1 at the origin and the other two 1's on two of the three axes.
From _Gus Wiseman_, Jan 22 2019: (Start)
The a(1) = 1 through a(4) = 26 solid partitions, represented as chains of chains of integer partitions:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((1)(1)) ((111)) ((31))
((1))((1)) ((2)(1)) ((211))
((11)(1)) ((1111))
((2))((1)) ((2)(2))
((1)(1)(1)) ((3)(1))
((11))((1)) ((21)(1))
((1)(1))((1)) ((11)(11))
((1))((1))((1)) ((111)(1))
((2))((2))
((3))((1))
((2)(1)(1))
((21))((1))
((11))((11))
((11)(1)(1))
((111))((1))
((2)(1))((1))
((1)(1)(1)(1))
((11)(1))((1))
((2))((1))((1))
((1)(1))((1)(1))
((1)(1)(1))((1))
((11))((1))((1))
((1)(1))((1))((1))
((1))((1))((1))((1))
(End)
- P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Roal Soc., 211 (1912), 345-373.
- P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Suresh Govindarajan, Table of n, a(n) for n = 0..72
- Alimzhan Amanov and Damir Yeliussizov, MacMahon's statistics on higher-dimensional partitions, arXiv:2009.00592 [math.CO], 2020. Mentions this sequence.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy], DOI
- Srivatsan Balakrishnan, Suresh Govindarajan and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011.
- P. Bratley and J. K. S. McKay, Algorithm 313: Multi-dimensional partition generator, Comm. ACM, 10 (Issue 10, 1967), p. 666.
- Nicolas Destainville and Suresh Govindarajan, Estimating the asymptotics of solid partitions, arXiv:1406.5605 [cond-mat.stat-mech], 2014; J. Stat. Phys. 158 (2015) 950-967.
- Suresh Govindarajan, Solid Partitions Project Dec 14, 2010.
- D. E. Knuth, A Note on Solid Partitions, Math. Comp. 24, 955-961, 1970.
- P. A. MacMahon, Combinatory analysis.
- Ville Mustonen and R. Rajesh, Numerical Estimation of the Asymptotic Behaviour of Solid Partitions of an Integer, arXiv:cond-mat/0303607 [cond-mat.stat-mech], 2003; J. Phys. A 36 (2003), no. 24, 6651-6659.
- S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011.
- Eric Weisstein's World of Mathematics, Solid Partition
- Wikipedia, Solid partition
- Damir Yeliussizov, Bounds on the number of higher-dimensional partitions, arXiv:2302.04799 [math.CO], 2023.
Cf.
A000041,
A000219 (2-dim),
A000294,
A000334 (4-dim),
A000390 (5-dim),
A002835,
A002836,
A005980,
A037452 (inverse Euler trans.),
A080207,
A007326,
A000416 (6-dim),
A000427 (7-dim),
A179855 (8-dim).
-
planePtns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn],And@@(GreaterEqual@@@Transpose[PadRight[#]])&],{ptn,IntegerPartitions[n]}];
solidPtns[n_]:=Join@@Table[Select[Tuples[planePtns/@y],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])&],{y,IntegerPartitions[n]}];
Table[Length[solidPtns[n]],{n,10}] (* Gus Wiseman, Jan 23 2019 *)
More terms from the Mustonen and Rajesh article, May 02 2003
A005980
Let F(x) = 1 + x + 4x^2 + 9x^3 + ... = g.f. for A002835 (solid partitions restricted to two planes) and expand (1-x)(1-x^2)(1-x^3)...*F(x) in powers of x.
Original entry on oeis.org
1, 0, 2, 4, 9, 16, 35, 63, 129, 234, 445, 798, 1458, 2568, 4561, 7924, 13770, 23584, 40301, 68097, 114646, 191336, 317893, 524396, 861054, 1405130, 2282651, 3688254, 5933463
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Showing 1-3 of 3 results.
Comments