This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002841 M1615 N0631 #42 Feb 16 2025 08:32:27 %S A002841 1,1,2,6,16,50,165,554,1908,6667,23556,84048,302404,1095536,3993623 %N A002841 Number of 3-connected self-dual planar graphs with 2n edges. %C A002841 Also number of self-dual polyhedra with n+1 vertices (and n+1 faces). - _Franklin T. Adams-Watters_, Dec 18 2006 %D A002841 M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992. %D A002841 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002841 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002841 C. J. Bouwkamp & N. J. A. Sloane, <a href="/A000162/a000162.pdf">Correspondence, 1971</a> %H A002841 M. B. Dillencourt, <a href="http://dx.doi.org/10.1006/jctb.1996.0008">Polyhedra of small orders and their Hamiltonian properties</a>, Journal of Combinatorial Theory, Series B, Volume 66, Issue 1, January 1996, Pages 87-122. See bottom of Table IV on page 98. %H A002841 P. J. Federico, <a href="http://dx.doi.org/10.1016/S0021-9800(69)80050-5">Enumeration of polyhedra: the number of 9-hedra</a>, J. Combin. Theory, 7 (1969), 155-161. %H A002841 House of Graphs, <a href="https://houseofgraphs.org/meta-directory/planar">Planar graphs</a> %H A002841 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Self-DualGraph.html">Self-Dual Graph</a> %Y A002841 Cf. A000944. %K A002841 nonn,nice,more %O A002841 3,3 %A A002841 _N. J. A. Sloane_ %E A002841 Definition corrected by _Gordon F. Royle_, Dec 15 2005 %E A002841 a(14)-a(17) added by _Jan Goedgebeur_, Sep 16 2021