cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002851 Number of unlabeled trivalent (or cubic) connected simple graphs with 2n nodes.

This page as a plain text file.
%I A002851 M1521 N0595 #125 Feb 16 2025 08:32:27
%S A002851 1,0,1,2,5,19,85,509,4060,41301,510489,7319447,117940535,2094480864,
%T A002851 40497138011,845480228069,18941522184590,453090162062723,
%U A002851 11523392072541432,310467244165539782,8832736318937756165
%N A002851 Number of unlabeled trivalent (or cubic) connected simple graphs with 2n nodes.
%D A002851 CRC Handbook of Combinatorial Designs, 1996, p. 647.
%D A002851 F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 195.
%D A002851 R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
%D A002851 R. C. Read and G. F. Royle, Chromatic roots of families of graphs, pp. 1009-1029 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991.
%D A002851 R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
%D A002851 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002851 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence)
%H A002851 Peter Adams, Ryan C. Bunge, Roger B. Eggleton, Saad I. El-Zanati, Uğur Odabaşi, and Wannasiri Wannasit, <a href="http://www.the-ica.org/Volumes/92/Reprints/BICA2020-26-Reprint.pdf">Decompositions of complete graphs and complete bipartite graphs into bipartite cubic graphs of order at most 12</a>, Bull. Inst. Combinatorics and Applications (2021) Vol. 92, 50-61.
%H A002851 G. Brinkmann, J. Goedgebeur and B. D. McKay, <a href="https://doi.org/10.46298/dmtcs.551">Generation of cubic graphs</a>, Discr. Math. Theor. Comp. Sci. 13 (2) (2011) 69-80
%H A002851 G. Brinkmann, J. Goedgebeur, and N. Van Cleemput, <a href="http://caagt.ugent.be/jgoedgeb/paper-cubic_graphs_survey.pdf">The history of the generation of cubic graphs</a>, Int. J. Chem. Modeling 5 (2-3) (2013) 67-89
%H A002851 F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, <a href="http://alexandria.tue.nl/repository/books/252909.pdf">Computer investigations of cubic graphs</a>, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
%H A002851 F. C. Bussemaker, S. Cobeljic, D. M. Cvetkovic, and J. J. Seidel, <a href="http://dx.doi.org/10.1016/0095-8956(77)90034-X">Cubic graphs on <= 14 vertices</a> J. Combinatorial Theory Ser. B 23(1977), no. 2-3, 234--235. MR0485524 (58 #5354).
%H A002851 Timothy B. P. Clark and Adrian Del Maestro, <a href="http://arxiv.org/abs/1506.02048">Moments of the inverse participation ratio for the Laplacian on finite regular graphs</a>, arXiv:1506.02048 [math-ph], 2015.
%H A002851 Jan Goedgebeur and Patric R. J. Ostergard, <a href="https://arxiv.org/abs/2105.01363">Switching 3-Edge-Colorings of Cubic Graphs</a>, arXiv:2105:01363 [math.CO], May 2021. See Table 1.
%H A002851 H. Gropp, <a href="http://dx.doi.org/10.1016/0012-365X(92)90592-4">Enumeration of regular graphs 100 years ago</a>, Discrete Math., 101 (1992), 73-85.
%H A002851 House of Graphs, <a href="https://houseofgraphs.org/meta-directory/cubic">Cubic graphs</a>
%H A002851 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a>
%H A002851 M. Klin, M. Rücker, Ch. Rücker and G. Tinhofer, <a href="http://www-lit.ma.tum.de/veroeff/html/950.05003.html">Algebraic Combinatorics</a> [broken link]
%H A002851 M. Klin, M. Rücker, Ch. Rücker, and G. Tinhofer, <a href="ftp://ftp.mathe2.uni-bayreuth.de/axel/papers/klin:algebraic_combinatorics_in_mathematical_chemistry_methods_and_applications_1_permutation_groups_and_coherent_algebras.ps.gz">Algebraic Combinatorics</a> (1997)
%H A002851 Denis S. Krotov and Konstantin V. Vorob'ev, <a href="https://arxiv.org/abs/1812.02166">On unbalanced Boolean functions attaining the bound 2n/3-1 on the correlation immunity</a>, arXiv:1812.02166 [math.CO], 2018.
%H A002851 R. J. Mathar/Wikipedia, <a href="http://en.wikipedia.org/wiki/Table_of_simple_cubic_graphs">Table of simple cubic graphs</a> [From _N. J. A. Sloane_, Feb 28 2012]
%H A002851 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a>
%H A002851 R. W. Robinson and N. C. Wormald, <a href="http://dx.doi.org/10.1002/jgt.3190070412">Numbers of cubic graphs</a>. J. Graph Theory 7 (1983), no. 4, 463-467.
%H A002851 Sage, <a href="http://www.sagemath.org/doc/reference/graphs/sage/graphs/graph_generators.html">Common Graphs (Graph Generators)</a>
%H A002851 J. J. Seidel, R. R. Korfhage, & N. J. A. Sloane, <a href="/A002851/a002851.pdf">Correspondence 1975</a>
%H A002851 H. M. Sultan, <a href="http://www.math.columbia.edu/~hsultan/papers/separatingpantscomplex_v3.pdf">Separating pants decompositions in the pants complex</a>.
%H A002851 H. M. Sultan, <a href="http://arxiv.org/abs/1106.1472">Net of Pants Decompositions Containing a non-trivial Separating Curve in the Pants Complex</a>, arXiv:1106.1472 [math.GT], 2011.
%H A002851 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConnectedGraph.html">Connected Graph</a>
%H A002851 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicGraph.html">Cubic Graph</a>
%e A002851 G.f. = 1 + x^2 + 2*x^3 + 5*x^4 + 19*x^5 + 85*x^6 + 509*x^7 + 4060*x^8 + 41302*x^9 + 510489*x^10 + 7319447*x^11 + ...
%e A002851 a(0) = 1 because the null graph (with no vertices) is vacuously 3-regular.
%e A002851 a(1) = 0 because there are no simple connected cubic graphs with 2 nodes.
%e A002851 a(2) = 1 because the tetrahedron is the only cubic graph with 4 nodes.
%e A002851 a(3) = 2 because there are two simple cubic graphs with 6 nodes: the bipartite graph K_{3,3} and the triangular prism graph.
%Y A002851 Cf. A004109 (labeled connected cubic), A361407 (rooted connected cubic), A321305 (signed connected cubic), A000421 (connected cubic loopless multigraphs), A005967 (connected cubic multigraphs), A275744 (multisets).
%Y A002851 Contribution (almost all) from _Jason Kimberley_, Feb 10 2011: (Start)
%Y A002851 3-regular simple graphs: this sequence (connected), A165653 (disconnected), A005638 (not necessarily connected), A005964 (planar).
%Y A002851 Connected regular graphs A005177 (any degree), A068934 (triangular array), specified degree k: this sequence (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
%Y A002851 Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: this sequence (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
%Y A002851 Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)
%K A002851 nonn,nice
%O A002851 0,4
%A A002851 _N. J. A. Sloane_
%E A002851 More terms from Ronald C. Read