This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002871 M1261 N0483 #55 Jan 18 2025 02:20:09 %S A002871 1,2,4,12,48,200,1040,5600,33600,222432,1460928,11487168,84713728, %T A002871 731574272,6314147840,55456727040,548291597568,5226494727168, %U A002871 54361802626560,586042688924160,6149776714099200,72895623466265600,855187250563024896 %N A002871 a(n) = max_{k=0..n} 2^k*A048993(n,k). %C A002871 Original name: Sorting numbers (see Motzkin article for details). %C A002871 For n>0, a(n) is also the maximum term in row n of the triangle in A227450. - _Danny Rorabaugh_, Oct 24 2015 %D A002871 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002871 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002871 Alois P. Heinz, <a href="/A002871/b002871.txt">Table of n, a(n) for n = 0..250</a> %H A002871 Victor Meally, <a href="/A002868/a002868.pdf">Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.</a> %H A002871 T. S. Motzkin, <a href="/A000262/a000262.pdf">Sorting numbers for cylinders and other classification numbers</a>, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy] %H A002871 OEIS Wiki, <a href="http://oeis.org/wiki/Sorting_numbers">Sorting numbers</a> %H A002871 <a href="/index/So#sorting">Index entries for sequences related to sorting</a> %F A002871 a(n) = max{2^k*Stirling2(n,k), k=0..n}. - _Sean A. Irvine_, Mar 26 2013 %p A002871 a:= n-> max(seq(2^k*Stirling2(n, k), k=0..n)): %p A002871 seq(a(n), n=0..30); # _Alois P. Heinz_, Mar 26 2013 %t A002871 a[n_] := Max[Table[2^k*StirlingS2[n, k], {k, 0, n}]]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 25 2015 *) %o A002871 (PARI) a(n) = vecmax(vector(n+1, k, 2^(k-1)*stirling(n, k-1, 2))); \\ _Michel Marcus_, Feb 25 2015 %Y A002871 Cf. A008277, A048993, A227450. %K A002871 nonn,nice %O A002871 0,2 %A A002871 _N. J. A. Sloane_ %E A002871 More terms from _Sean A. Irvine_, Mar 26 2013 %E A002871 New name from _Danny Rorabaugh_, Oct 24 2015