This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002907 M0391 N0149 #19 Mar 01 2021 07:21:03 %S A002907 2,2,20,38,146,368,1070,2824,7680,19996,53024,136350,355254,906254, %T A002907 2331416,5909810,15067236,37992680,96210436,241564514,608469654, %U A002907 1522388638,3818281784,9525139886,23806217352,59237754234,147621207142,366533832540,911151508282 %N A002907 High temperature series in v = tanh(J/kT) for residual correlation function (correction to susceptibility) for the spin-1/2 Ising model on square lattice. %C A002907 Previous name was: Susceptibility for square lattice. %D A002907 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002907 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002907 M. F. Sykes and M. E. Fisher, <a href="https://doi.org/10.1016/0031-8914(62)90080-0">Antiferromagnetic susceptibility of the plane square and honeycomb Ising lattices</a>, Physica, 28 (1962), 919-938. %F A002907 G.f.: ((1-3*v)^2*xi(v) - (1-v)^2 + 2*v*u(v)) / (8*v^7*(1+v)^2), where xi(v) is the g.f. of A002906 and u(v) is the g.f. of A002908 (odd powers only!); the actual "residual correlation function" is the numerator of this expression [Sykes & Fisher]. - _Andrey Zabolotskiy_, Feb 28 2021 %Y A002907 Cf. A002906, A002908. %K A002907 nonn %O A002907 0,1 %A A002907 _N. J. A. Sloane_ %E A002907 New name and terms a(10) and beyond from _Andrey Zabolotskiy_, Feb 28 2021