A002920 High-temperature series in w = tanh(J/kT) for ferromagnetic susceptibility for the spin-1/2 Ising model on hexagonal lattice.
1, 6, 30, 138, 606, 2586, 10818, 44574, 181542, 732678, 2935218, 11687202, 46296210, 182588850, 717395262, 2809372302, 10969820358, 42724062966, 166015496838, 643768299018, 2491738141314, 9628130289018, 37146098272266, 143110933254702, 550643544948090
Offset: 0
References
- C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 380.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Y. Chan, A. J. Guttmann, B. G. Nickel, and J. H. H. Perk, The Ising Susceptibility Scaling Function, J Stat Phys 145 (2011), 549-590; arXiv:1012.5272 [cond-mat.stat-mech], 2010-2020. Gives 320 terms in the file Triangle_v319.
- C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
- Michael E. Fisher, Transformations of Ising Models, Phys. Rev. 113 (1959), 969-981.
- M. E. Fisher and R. J. Burford, Theory of critical point scattering and correlations I: the Ising model, Phys. Rev. 156 (1967), 583-621.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.
- M. F. Sykes, D. G. Gaunt, P. D. Roberts and J. A. Wyles, High temperature series for the susceptibility of the Ising model, I. Two dimensional lattices, J. Phys. A 5 (1972) 624-639.
Formula
G.f.: (h(v(w)) + h(-v(w))) / 2, where h(v) is the g.f. of A002910 and v(w)^2 = w*(1+w)/(1+w^3) [Fisher, p. 979]. - Andrey Zabolotskiy, Mar 01 2021
Extensions
Edited and extended from Chan et al by Andrey Zabolotskiy, Mar 03 2021
Comments