A002929 Magnetization for cubic lattice.
1, 0, 0, -2, 0, -12, 14, -90, 192, -792, 2148, -7716, 23262, -79512, 252054, -846628, 2753520, -9205800, 30371124, -101585544, 338095596, -1133491188, 3794908752, -12758932158, 42903505030, -144655483440, 488092130664, -1650000819068, 5583090702798, -18918470423736, 64167341172984, -217893807812346, 740578734923544
Offset: 0
References
- C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 421.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andreas Wipf, Statistical Approach to Quantum Field Theory, LNP 864, Springer, 2013. See Table 9.6, beware of the typo in a(12).
Links
- C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
- M. F. Sykes, J. W. Essam and D. S. Gaunt, Derivation of low-temperature expansions for the Ising model of a ferromagnet and an antiferromagnet, J. Math. Phys. 6 (1965), 283-298.
- M. F. Sykes et al., Derivation of low-temperature expansions for Ising model VI. Three-dimensional lattices - temperature grouping, J. Phys. A 6 (1973), 1507-1516.
Extensions
a(21)-a(32) from Wipf added by Andrey Zabolotskiy, Oct 18 2021