This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002947 M0200 #40 Jul 04 2024 19:58:10 %S A002947 1,1,1,2,2,1,3,2,3,1,3,1,30,1,4,1,2,9,6,4,1,1,2,7,2,3,2,1,6,1,1,1,25, %T A002947 1,7,7,1,1,1,1,266,1,3,2,1,3,60,1,5,1,8,5,6,1,4,20,1,4,1,1,14,1,4,4,1, %U A002947 1,1,1,7,3,1,1,2,1,3,1,4,4,1,1,1,3,1,34,8,2,10,6,3,1,2,31,1,1,1,4,3,44,1,45 %N A002947 Continued fraction for cube root of 4. %D A002947 H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973. %D A002947 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002947 Harry J. Smith, <a href="/A002947/b002947.txt">Table of n, a(n) for n = 0..19999</a> %H A002947 S. Lang and H. Trotter, <a href="http://dx.doi.org/10.1515/crll.1972.255.112">Continued fractions for some algebraic numbers</a>, J. Reine Angew. Math. 255 (1972), 112-134. %H A002947 S. Lang and H. Trotter, <a href="/A002945/a002945.pdf">Continued fractions for some algebraic numbers</a>, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy] %H A002947 Herman P. Robinson, <a href="/A003116/a003116.pdf">Letter to N. J. A. Sloane, Nov 13 1973</a>. %H A002947 Gang Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A002947 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %e A002947 4^(1/3) = 1.58740105196819947... = 1 + 1/(1 + 1/(1 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, May 08 2009 %t A002947 ContinuedFraction[4^(1/3), 80] (* _Alonso del Arte_, Jul 24 2015 *) %o A002947 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(4^(1/3)); for (n=1, 20000, write("b002947.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, May 08 2009 %o A002947 (Magma) [ContinuedFraction(4^(1/3))]; // _Vincenzo Librandi_, Aug 02 2015 %Y A002947 Cf. A005480 (decimal expansion). - _Harry J. Smith_, May 08 2009 %Y A002947 Cf. A002355, A002356 (convergents). %K A002947 nonn,cofr,easy %O A002947 0,4 %A A002947 _N. J. A. Sloane_ %E A002947 More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003 %E A002947 Offset changed by _Andrew Howroyd_, Jul 04 2024