cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002965 Interleave denominators (A000129) and numerators (A001333) of convergents to sqrt(2).

This page as a plain text file.
%I A002965 M0671 #147 Aug 01 2024 03:04:35
%S A002965 0,1,1,1,2,3,5,7,12,17,29,41,70,99,169,239,408,577,985,1393,2378,3363,
%T A002965 5741,8119,13860,19601,33461,47321,80782,114243,195025,275807,470832,
%U A002965 665857,1136689,1607521,2744210,3880899,6625109,9369319,15994428,22619537
%N A002965 Interleave denominators (A000129) and numerators (A001333) of convergents to sqrt(2).
%C A002965 Denominators of Farey fraction approximations to sqrt(2). The fractions are 1/0, 0/1, 1/1, 2/1, 3/2, 4/3, 7/5, 10/7, 17/12, .... See A082766(n+2) or A119016 for the numerators. "Add" (meaning here to add the numerators and add the denominators, not to add the fractions) 1/0 to 1/1 to make the fraction bigger: 2/1. Now 2/1 is too big, so add 1/1 to make the fraction smaller: 3/2, 4/3. Now 4/3 is too small, so add 3/2 to make the fraction bigger: 7/5, 10/7, ... Because the continued fraction for sqrt(2) is all 2's, it will always take exactly two terms here to switch from a number that's bigger than sqrt(2) to one that's less. A097545/A097546 gives the similar sequence for Pi. A119014/A119015 gives the similar sequence for e. - _Joshua Zucker_, May 09 2006
%C A002965 The principal and intermediate convergents to 2^(1/2) begin with 1/1, 3/2 4/3, 7/5, 10/7; essentially, numerators=A143607, denominators=A002965. - _Clark Kimberling_, Aug 27 2008
%C A002965 (a(2n)*a(2n+1))^2 is a triangular square. - _Hugh Darwen_, Feb 23 2012
%C A002965 a(2n) are the interleaved values of m such that 2*m^2+1 and 2*m^2-1 are squares, respectively; a(2n+1) are the interleaved values of their corresponding integer square roots. - _Richard R. Forberg_, Aug 19 2013
%C A002965 Coefficients of (sqrt(2)+1)^n are a(2n)*sqrt(2)+a(2n+1). - _John Molokach_, Nov 29 2015
%C A002965 Apart from the first two terms, this is the sequence of denominators of the convergents of the continued fraction expansion sqrt(2) = 1/(1 - 1/(2 + 1/(1 - 1/(2 + 1/(1 - ....))))). - _Peter Bala_, Feb 02 2017
%C A002965 Limit_{n->infinity} a(2n+1)/a(2n) = sqrt(2); lim_{n->infinity} a(2n)/a(2n-1) = (2+sqrt(2))/2. - _Ctibor O. Zizka_, Oct 28 2018
%D A002965 C. Brezinski, History of Continued Fractions and Padé Approximants. Springer-Verlag, Berlin, 1991, p. 24.
%D A002965 Jay Kappraff, Musical Proportions at the Basis of Systems of Architectural Proportion both Ancient and Modern, in Volume I of K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to the Future, DOI 10.1007/978-3-319-00143-2_27, Springer International Publishing Switzerland 2015. See Eq. 32.7.
%D A002965 Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
%D A002965 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A002965 Guelena Strehler, Chess Fractal, April 2016, p. 24.
%H A002965 T. D. Noe, <a href="/A002965/b002965.txt">Table of n, a(n) for n = 0..500</a>
%H A002965 Damanvir Singh Binner, <a href="https://arxiv.org/abs/2112.15474">Proofs of Chappelon and Alfonsín Conjectures On Square Frobenius Numbers and its Relationship to Simultaneous Pell's Equations</a>, arXiv:2112.15474 [math.NT], 2021.
%H A002965 Jonathan Chappelon and Jorge Luis Ramírez Alfonsín, <a href="https://arxiv.org/abs/2006.14219">The Square Frobenius Number</a>, arXiv:2006.14219 [math.NT], 2020.
%H A002965 H. S. M. Coxeter, <a href="http://dx.doi.org/10.1016/0021-8693(72)90096-8">The role of intermediate convergents in Tait's explanation for phyllotaxis</a>, J. Algebra 20 (1972), 167-175.
%H A002965 Clark Kimberling, <a href="http://dx.doi.org/10.1007/s000170050020">Best lower and upper approximates to irrational numbers</a>, Elemente der Mathematik, 52 (1997) 122-126.
%H A002965 Pierre Lamothe, <a href="http://web.archive.org/web/20080624084445/http://www.aei.ca/~plamothe/tangents.htm">En marge du problème des cercles tangents</a>
%H A002965 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A002965 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A002965 Dave Rusin, <a href="http://www.math.niu.edu/~rusin/known-math/99/farey">Farey fractions on sci.math</a> [Broken link]
%H A002965 Dave Rusin, <a href="/A002965/a002965.txt">Farey fractions on sci.math</a> [Cached copy]
%H A002965 K. Williams, <a href="http://dx.doi.org/10.1007/BF03024279">The sacred cult revisited: the pavement of the baptistery of San Giovanni, Florence</a>, Math. Intellig., 16 (No. 2, 1994), 18-24.
%H A002965 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,1).
%F A002965 a(n) = 2*a(n-2) + a(n-4) if n>3; a(0)=0, a(1)=a(2)=a(3)=1.
%F A002965 a(2*n) = a(2*n-1) + a(2*n-2) and a(2*n+1) = 2*a(2*n) - a(2*n-1).
%F A002965 G.f.: (x+x^2-x^3)/(1-2*x^2-x^4).
%F A002965 a(0)=0, a(1)=1, a(n) = a(n-1) + a(2*[(n-2)/2]). - _Franklin T. Adams-Watters_, Jan 31 2006
%F A002965 For n > 0, a(2*n) = a(2*n-1) + a(2*n-2) and a(2*n+1) = a(2*n) + a(2*n-2). - _Jon Perry_, Sep 12 2012
%F A002965 a(n) = (((sqrt(2) - 2)*(-1)^n + 2 + sqrt(2))*(1 + sqrt(2))^(floor(n/2)) - ((2 + sqrt(2))*(-1)^n -2 + sqrt(2))*(1 - sqrt(2))^(floor(n/2)))/8. - _Ilya Gutkovskiy_, Jul 18 2016
%F A002965 a(n) = a(n-1) + a(n-2-(n mod 2)); a(0)=0, a(1)=1. - _Ctibor O. Zizka_, Oct 28 2018
%e A002965 The convergents are rational numbers given by the recurrence relation p/q -> (p + 2*q)/(p + q). Starting with 1/1, the next three convergents are (1 + 2*1)/(1 + 1) = 3/2, (3 + 2*2)/(3 + 2) = 7/5, and (7 + 2*5)/(7 + 5) = 17/12. The sequence puts the denominator first, so a(2) through a(9) are 1, 1, 2, 3, 5, 7, 12, 17. - _Michael B. Porter_, Jul 18 2016
%p A002965 A002965 := proc(n) option remember; if n <= 0 then 0; elif n <= 3 then 1; else 2*A002965(n-2)+A002965(n-4); fi; end;
%p A002965 A002965:=-(1+2*z+z**2+z**3)/(-1+2*z**2+z**4); # conjectured by _Simon Plouffe_ in his 1992 dissertation; gives sequence except for two leading terms
%t A002965 LinearRecurrence[{0, 2, 0, 1}, {0, 1, 1, 1}, 42] (* _Vladimir Joseph Stephan Orlovsky_, Feb 13 2012 *)
%t A002965 With[{c=Convergents[Sqrt[2],20]},Join[{0,1},Riffle[Denominator[c], Numerator[c]]]] (* _Harvey P. Dale_, Oct 03 2012 *)
%o A002965 (PARI) a(n)=if(n<4,n>0,2*a(n-2)+a(n-4))
%o A002965 (PARI) x='x+O('x^100); concat(0, Vec((x+x^2-x^3)/(1-2*x^2-x^4))) \\ _Altug Alkan_, Dec 04 2015
%o A002965 (JavaScript)
%o A002965 a=new Array(); a[0]=0; a[1]=1;
%o A002965 for (i=2;i<50;i+=2) {a[i]=a[i-1]+a[i-2];a[i+1]=a[i]+a[i-2];}
%o A002965 document.write(a); // _Jon Perry_, Sep 12 2012
%o A002965 (Haskell)
%o A002965 import Data.List (transpose)
%o A002965 a002965 n = a002965_list !! n
%o A002965 a002965_list = concat $ transpose [a000129_list, a001333_list]
%o A002965 -- _Reinhard Zumkeller_, Jan 01 2014
%o A002965 (Magma) I:=[0,1,1,1]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Nov 30 2015
%o A002965 (GAP) a:=[0,1];; for n in [3..45] do a[n]:=a[n-1]+a[n-2-((n-1) mod 2)]; od; a; # _Muniru A Asiru_, Oct 28 2018
%Y A002965 Cf. A000129(n) = a(2n), A001333(n) = a(2n+1).
%Y A002965 Cf. A001109, A155046.
%K A002965 nonn,easy,nice,frac
%O A002965 0,5
%A A002965 _N. J. A. Sloane_
%E A002965 Thanks to _Michael Somos_ for several comments which improved this entry.