This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003016 M0227 #73 Jun 26 2025 01:24:36 %S A003016 0,3,1,2,2,2,3,2,2,2,4,2,2,2,2,4,2,2,2,2,3,4,2,2,2,2,2,2,4,2,2,2,2,2, %T A003016 2,4,4,2,2,2,2,2,2,2,2,4,2,2,2,2,2,2,2,2,2,4,4,2,2,2,2,2,2,2,2,2,4,2, %U A003016 2,2,3,2,2,2,2,2,2,2,4,2,2,2,2,2,4,2,2,2,2,2,2,4,2,2,2,2,2,2,2,2,2,2 %N A003016 Number of occurrences of n as an entry in rows <= n of Pascal's triangle (A007318). %C A003016 Or, number of occurrences of n as a binomial coefficient. [Except for 1 which occurs infinitely many times. This is the only reason for the restriction "row <= n" in the definition. Any other number can only appear in rows <= n. - _M. F. Hasler_, Feb 16 2023] %C A003016 Sequence A138496 gives record values and where they occur. - _Reinhard Zumkeller_, Mar 20 2008 %C A003016 Singmaster conjectures that this sequence is bounded. - _Michael J. Hardy_, Jun 09 2025 %D A003016 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 93, #47. %D A003016 C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 96. %D A003016 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003016 Reinhard Zumkeller, <a href="/A003016/b003016.txt">Table of n, a(n) for n = 0..10000</a> %H A003016 H. L. Abbott, P. Erdős and D. Hanson, <a href="http://www.jstor.org/stable/2319526">On the numbers of times an integer occurs as a binomial coefficient</a>, Amer. Math. Monthly, (1974), 256-261. %H A003016 Daniel Kane, <a href="http://www.emis.de/journals/INTEGERS/papers/e7/e7.Abstract.html">New Bounds on the Number of Representations of t as a Binomial Coefficient</a>, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper A7, 2004. %H A003016 Kaisa Matomäki, Maksym Radziwill, Xuancheng Shao, Terence Tao, and Joni Teräväinen, <a href="https://arxiv.org/abs/2106.03335">Singmaster's conjecture in the interior of Pascal's triangle</a>, arXiv:2106.03335 [math.NT], 2021. %H A003016 D. Singmaster, <a href="http://www.jstor.org/stable/2316907">How often does an integer occur as a binomial coefficient?</a>, Amer. Math. Monthly, 78 (1971), 385-386. %H A003016 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PascalsTriangle.html">Pascal's Triangle</a> %H A003016 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %t A003016 a[0] = 0; t = {{1}}; a[n_] := Count[ AppendTo[t, Table[ Binomial[n, k], {k, 0, n}]], n, {2}]; Table[a[n], {n, 0, 101}] (* _Jean-François Alcover_, Feb 20 2012 *) %o A003016 (Haskell) %o A003016 a003016 n = sum $ map (fromEnum . (== n)) $ %o A003016 concat $ take (fromInteger n + 1) a007318_tabl %o A003016 -- _Reinhard Zumkeller_, Apr 12 2012 %o A003016 (PARI) {A003016(n)=if(n<4, [0,3,1,2][n+1], my(c=2, k=2, r=sqrtint(2*n)+1, C=r*(r-1)/2); until(, while(C<n && k<r\2, C *= r-k; k += 1; C \= k); C == n && c += 2-(r == 2*k); k >= r\2 && break; C *= r-k; C \= r; r -= 1); c)} \\ _M. F. Hasler_, Feb 16 2023 %o A003016 (Python) %o A003016 from math import isqrt # requires python3.8 or higher %o A003016 def A003016(n): %o A003016 if n < 4: return[0,3,1,2][n] %o A003016 cnt = k = 2; r = isqrt(2*n)+1; C = r*(r-1)//2 %o A003016 while True: %o A003016 while C < n and k < r//2: %o A003016 C *= r-k; k += 1; C //= k %o A003016 if C == n: cnt += 2 - (r == 2*k) %o A003016 if k >= r//2: return cnt %o A003016 C *= r-k; C //= r; r -= 1 # _M. F. Hasler_, Feb 16 2023 %Y A003016 Cf. A003015, A059233, A138496, A180058. %K A003016 nonn,nice,easy %O A003016 0,2 %A A003016 _N. J. A. Sloane_ %E A003016 More terms from _Erich Friedman_ %E A003016 Edited by _N. J. A. Sloane_, Nov 18 2007, at the suggestion of _Max Alekseyev_