This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003038 M2712 #23 Jan 31 2022 01:13:04 %S A003038 3,8,10,14,15,21,24,28,35,36,45,48,52,55,63,66,78,80,91,99,105,120, %T A003038 133,136,143,153,168,171,190,195,210,224,231,248,253,255,276,288,300, %U A003038 323,325,351,360,378,399,406,435,440,465,483,496,528,561,575,595,624,630 %N A003038 Dimensions of split simple Lie algebras over any field of characteristic zero. %D A003038 Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652. %D A003038 N. Jacobson, Lie Algebras. Wiley, NY, 1962; pp. 141-146. %D A003038 I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal., 13 (1982), 988-1007. %D A003038 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003038 N. J. A. Sloane, <a href="/A003038/b003038.txt">Table of n, a(n) for n = 1..10000</a> %e A003038 The Lie algebras in question and their dimensions are the following: %e A003038 A_l: l(l+2), l >= 1, %e A003038 B_l: l(2l+1), l >= 2, %e A003038 C_l: l(2l+1), l >= 3, %e A003038 D_l: l(2l-1), l >= 4, %e A003038 G_2: 14, F_4: 52, E_6: 78, E_7: 133, E_8: 248. %p A003038 M:=4200; M2:=M^2; sa:=[seq(l*(l+2),l=1..M)]; sb:=[seq(l*(2*l+1),l=2..M)]; sd:=[seq(l*(2*l-1),l=4..M)]; se:=[14,52,78,133,248]; s:=convert(sa,set) union convert(sb,set) union convert(sd,set) union convert(se,set); t:=convert(s,list); for i from 1 to nops(t) do if t[i] <= M2 then lprint(i,t[i]); fi; od: %t A003038 max = 26; sa = Table[ k*(k+2), {k, 1, max}]; sb = Table[ k*(2k+1), {k, 2, max}]; sd:= Table[ k*(2k-1), {k, 4, max}]; se = {14, 52, 78, 133, 248}; Select[ Union[sa, sb, sd, se], # <= max^2 &](* _Jean-François Alcover_, Nov 18 2011, after Maple *) %o A003038 (Haskell) %o A003038 import Data.Set (deleteFindMin, fromList, insert) %o A003038 a003038 n = a003038_list !! (n-1) %o A003038 a003038_list = f (fromList (3 : [14, 52, 78, 133, 248])) %o A003038 (drop 2 a005563_list) (drop 4 a000217_list) where %o A003038 f s (x:xs) (y:ys) = m : f (x `insert` (y `insert` s')) xs ys where %o A003038 (m, s') = deleteFindMin s %o A003038 -- _Reinhard Zumkeller_, Dec 16 2012 %Y A003038 Cf. A001066, A126581. %Y A003038 Subsequences, apart from some initial terms: A000217, A000384, A005563, A014105. %K A003038 nonn,nice,easy %O A003038 1,1 %A A003038 _N. J. A. Sloane_ %E A003038 More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004