cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003038 Dimensions of split simple Lie algebras over any field of characteristic zero.

This page as a plain text file.
%I A003038 M2712 #23 Jan 31 2022 01:13:04
%S A003038 3,8,10,14,15,21,24,28,35,36,45,48,52,55,63,66,78,80,91,99,105,120,
%T A003038 133,136,143,153,168,171,190,195,210,224,231,248,253,255,276,288,300,
%U A003038 323,325,351,360,378,399,406,435,440,465,483,496,528,561,575,595,624,630
%N A003038 Dimensions of split simple Lie algebras over any field of characteristic zero.
%D A003038 Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652.
%D A003038 N. Jacobson, Lie Algebras. Wiley, NY, 1962; pp. 141-146.
%D A003038 I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal., 13 (1982), 988-1007.
%D A003038 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A003038 N. J. A. Sloane, <a href="/A003038/b003038.txt">Table of n, a(n) for n = 1..10000</a>
%e A003038 The Lie algebras in question and their dimensions are the following:
%e A003038 A_l: l(l+2), l >= 1,
%e A003038 B_l: l(2l+1), l >= 2,
%e A003038 C_l: l(2l+1), l >= 3,
%e A003038 D_l: l(2l-1), l >= 4,
%e A003038 G_2: 14, F_4: 52, E_6: 78, E_7: 133, E_8: 248.
%p A003038 M:=4200; M2:=M^2; sa:=[seq(l*(l+2),l=1..M)]; sb:=[seq(l*(2*l+1),l=2..M)]; sd:=[seq(l*(2*l-1),l=4..M)]; se:=[14,52,78,133,248]; s:=convert(sa,set) union convert(sb,set) union convert(sd,set) union convert(se,set); t:=convert(s,list); for i from 1 to nops(t) do if t[i] <= M2 then lprint(i,t[i]); fi; od:
%t A003038 max = 26; sa = Table[ k*(k+2), {k, 1, max}]; sb = Table[ k*(2k+1), {k, 2, max}]; sd:= Table[ k*(2k-1), {k, 4, max}]; se = {14, 52, 78, 133, 248}; Select[ Union[sa, sb, sd, se], # <= max^2 &](* _Jean-François Alcover_, Nov 18 2011, after Maple *)
%o A003038 (Haskell)
%o A003038 import Data.Set (deleteFindMin, fromList, insert)
%o A003038 a003038 n = a003038_list !! (n-1)
%o A003038 a003038_list = f (fromList (3 : [14, 52, 78, 133, 248]))
%o A003038    (drop 2 a005563_list) (drop 4 a000217_list) where
%o A003038    f s (x:xs) (y:ys) = m : f (x `insert` (y `insert` s')) xs ys where
%o A003038      (m, s') = deleteFindMin s
%o A003038 -- _Reinhard Zumkeller_, Dec 16 2012
%Y A003038 Cf. A001066, A126581.
%Y A003038 Subsequences, apart from some initial terms: A000217, A000384, A005563, A014105.
%K A003038 nonn,nice,easy
%O A003038 1,1
%A A003038 _N. J. A. Sloane_
%E A003038 More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004