This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003039 M1596 #30 Jun 09 2017 20:41:06 %S A003039 1,2,6,13,32,92 %N A003039 Maximal number of prime implicants of a Boolean function of n variables. %C A003039 Dunham and Fridsal showed that a(8) is at least 576. - _Don Knuth_, Aug 25 2005 %D A003039 M. M. Gadzhiev, Maximal length of the reduced disjunctive normal form for Boolean functions with five and six variables, Diskretnyi Analiz (Novosibirsk), (1971), 3-24 [ Computing Reviews #23,815, Sep. 1972 ]. %D A003039 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003039 B. Dunham and R. Fridshal, <a href="http://www.jstor.org/stable/2964570">The problem of simplifying logical expressions</a>, Journal of Symbolic Logic, 24 (1959), 17-19. %H A003039 M. M. Gadzhiev, <a href="/A003039/a003039.pdf">Maximal length of the reduced disjunctive normal form for Boolean functions with five and six variables</a>, Diskretnyi Analiz (Novosibirsk), (1971), 3-24 [ Computing Reviews #23,815, Sep. 1972 ]. [Annotated scanned copy] %H A003039 M. M. Gadzhiev, <a href="/A003039/a003039_1.pdf">Maximal length of the reduced disjunctive normal form for Boolean functions with five and six variables (abstract)</a>, Diskretnyi Analiz (Novosibirsk), (1971), 3-24 [ Computing Reviews #23,815, Sep. 1972 ]. [Annotated scanned copy of abstract] %H A003039 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a> %e A003039 a(3)=6 because of (x XOR y) OR (x XOR z) OR (y XOR z). %K A003039 nonn,hard,more,nice %O A003039 1,2 %A A003039 _N. J. A. Sloane_