A003040 Highest degree of an irreducible representation of symmetric group S_n of degree n.
1, 1, 2, 3, 6, 16, 35, 90, 216, 768, 2310, 7700, 21450, 69498, 292864, 1153152, 4873050, 16336320, 64664600, 249420600, 1118939184, 5462865408, 28542158568, 117487079424, 547591590000, 2474843571200, 12760912164000, 57424104738000, 295284192952320
Offset: 1
Keywords
Examples
a(5) = 6 because the degrees for S_5 are 1,1,4,4,5,5,6.
References
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups. 2nd ed., Oxford University Press, 1950, p. 265.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vasilii Duzhin, Table of n, a(n) for n = 1..153 (terms up to a(80) from Eric M. Schmidt)
- S. Comét, Improved methods to calculate the characters of the symmetric group, Math. Comp. 14 (1960) 104-117.
- J. McKay, The largest degrees of irreducible characters of the symmetric group. Math. Comp. 30 (1976), no. 135, 624-631. (Gives first 75 terms.)
- J. McKay, Page 1 of 5 pages of tables from Math. Comp. paper [reports 29th term incorrectly]
- J. McKay, Page 2 of 5 pages of tables from Math. Comp. paper
- J. McKay, Page 3 of 5 pages of tables from Math. Comp. paper
- J. McKay, Page 4 of 5 pages of tables from Math. Comp. paper
- J. McKay, Page 5 of 5 pages of tables from Math. Comp. paper
- Igor Pak, Greta Panova, and Damir Yeliussizov, On the largest Kronecker and Littlewood-Richardson coefficients, arXiv:1804.04693 [math.CO], 2018.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
Crossrefs
Programs
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := a[n] = g[n, n, {}] // Max; Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
-
Sage
def A003040(n): res = 1 for P in Partitions(n): res = max(res, P.dimension()) return res # Eric M. Schmidt, May 07 2013
Extensions
Entry revised and extended by N. J. A. Sloane, Apr 28 2006
a(29) corrected by Eric M. Schmidt, May 07 2013
Comments