cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003068 Problimes (third definition).

This page as a plain text file.
%I A003068 M1038 #28 Jul 02 2025 16:01:54
%S A003068 2,4,7,11,15,19,23,28,33,38,43,48,53,58,63,68,73,79,85,91,97,103,109,
%T A003068 115,121,127,133,139,145,151,157,163,169,175,181,187,193,199,205,211,
%U A003068 217,224,231,238,245,252,259,266,273,280,287,294,301,308,315,322,329
%N A003068 Problimes (third definition).
%D A003068 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A003068 T. D. Noe, <a href="/A003068/b003068.txt">Table of n, a(n) for n=1..1000</a>
%H A003068 M. D. Hirschhorn, <a href="http://www.jstor.org/stable/2319173">How unexpected is the prime number theorem?</a>, Amer. Math. Monthly, 80 (1973), 675-677.
%H A003068 M. D. Hirschhorn, <a href="/A003066/a003066.pdf">How unexpected is the prime number theorem?</a>, Amer. Math. Monthly, 80 (1973), 675-677. [Annotated scanned copy]
%H A003068 R. C. Vaughan, <a href="http://blms.oxfordjournals.org/content/6/3/337.extract">The problime number theorem</a>, Bull. London Math. Soc., 6 (1974), 337-340.
%p A003068 a[1] := 2: for i from 1 to 150 do a[i+1] := ceil(a[i]+1/product((1-1/a[j]), j=1..i)): od: # _James Sellers_, Mar 07 2000
%t A003068 a[1] = 2; a[n_] := a[n] = Ceiling[a[n-1] + 1/Product[1 - 1/a[j], {j, 1, n-1}]]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Nov 18 2013 *)
%Y A003068 Cf. A003066, A003067.
%K A003068 nonn,nice
%O A003068 1,1
%A A003068 _N. J. A. Sloane_
%E A003068 More terms from _James Sellers_, Mar 07 2000