This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003077 #28 Feb 16 2025 08:32:27 %S A003077 0,0,1,2,6,4,4,8,9,2,6,7,3,4,9,6,1,8,6,8,0,2,1,3,7,5,9,5,7,7,6,3,9,9, %T A003077 7,2,9,4,5,6,8,7,7,4,3,4,8,2,0,3,7,0,3,6,1,6,7,9,1,2,5,5,0,5,4,9,3,2, %U A003077 6,4,5,0,8,5,6,6,4,8,1,4,4,2,2,9,1,0,8,0,3,1,8,0,0,7,4,0,0,7,4,8 %N A003077 Decimal expansion of 22/7 - Pi. %D A003077 Alf van der Poorten, Notes on Fermat's Last Theorem, Wiley, 1996, p. 15. %H A003077 G. C. Greubel, <a href="/A003077/b003077.txt">Table of n, a(n) for n = 0..10000</a> %H A003077 MathOverflow, <a href="http://mathoverflow.net/questions/67384">Source and context of 22/7-Pi = Integral_{0..1} (x-x^2)^4/(1+x^2) dx ?</a> %H A003077 Paul J. Nahin, <a href="https://doi.org/10.1007/978-3-030-43788-6">Inside interesting integrals</a>, Undergrad. Lecture Notes in Physics, Springer (2020), (1.7.1) %H A003077 Anthony Sofo, <a href="https://doi.org/10.1007/s13226-019-0313-z">Euler related binomial sums</a>, Indian J. Pure Appl. Math. 50 (1) (2019) 149-160 %H A003077 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/Pi.html">Pi</a> %H A003077 Wikipedia, <a href="http://www.wikipedia.org/wiki/Pi">Pi</a> %H A003077 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A003077 22/7 - Pi = Integral_{x=0..1} x^4*(1-x)^4/(1+x^2). - _M. F. Hasler_, Oct 24 2011 %F A003077 Equals 60*Sum_{n>=1} 1/[(4*n^2-1)*(16*n^2-1)*(16*n^2-9)] . [Sofo] - _R. J. Mathar_, Jun 21 2024 %e A003077 0.001264489267349618680213759577639972945687743482037036167912550549326450856... %t A003077 Join[{0, 0}, RealDigits[22/7-Pi, 10, 98][[1]]] (* _Jean-François Alcover_, May 24 2013 *) %o A003077 (PARI) 22/7-Pi \\ _Charles R Greathouse IV_, Sep 30 2022 %o A003077 (Magma) m:=152; [0,0] cat Reverse(Intseq(Floor(10^m*(22/7 - Pi(RealField(m+5)))))); // _G. C. Greubel_, Nov 03 2022 %o A003077 (SageMath) (22/7 - pi).n(digits=150).nextbelow() # _G. C. Greubel_, Nov 03 2022 %Y A003077 Cf. A000796, A068028. %K A003077 cons,nonn %O A003077 0,4 %A A003077 _N. J. A. Sloane_