cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003090 Number of species (or "main classes" or "paratopy classes") of Latin squares of order n.

This page as a plain text file.
%I A003090 M0387 #55 Feb 02 2020 19:55:51
%S A003090 1,1,1,2,2,12,147,283657,19270853541,34817397894749939,
%T A003090 2036029552582883134196099
%N A003090 Number of species (or "main classes" or "paratopy classes") of Latin squares of order n.
%D A003090 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 231.
%D A003090 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A003090 Yue Guan, Minjia Shi, Denis S. Krotov, <a href="https://arxiv.org/abs/1905.09081">The Steiner triple systems of order 21 with a transversal subdesign TD(3,6)</a>, arXiv:1905.09081 [math.CO], 2019.
%H A003090 A. Hulpke, P. Kaski and Patric R. J. Östergård, <a href="http://dx.doi.org/10.1090/S0025-5718-2010-02420-2">The number of Latin squares of order 11</a>, Math. Comp. 80 (2011) 1197-1219
%H A003090 Brendan D. McKay, <a href="http://users.cecs.anu.edu.au/~bdm/data/latin.html">Latin Squares</a> (has list of all such squares)
%H A003090 Brendan D. McKay, A. Meynert and W. Myrvold, <a href="http://users.cecs.anu.edu.au/~bdm/papers/ls_final.pdf">Small Latin Squares, Quasigroups and Loops</a>, J. Combin. Designs, 15 (2007), no. 2, 98-119.
%H A003090 Brendan D. McKay and E. Rogoyski, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v2i1n3">Latin squares of order ten</a>, Electron. J. Combinatorics, 2 (1995) #N3.
%H A003090 M. G. Palomo, <a href="http://arxiv.org/abs/1402.0772">Latin polytopes</a>, arXiv preprint arXiv:1402.0772 [math.CO], 2014-2016.
%H A003090 Giancarlo Urzua, <a href="http://arXiv.org/abs/0704.0469">On line arrangements with applications to 3-nets</a>, arXiv:0704.0469 [math.AG], 2007-2009 (see page 9).
%H A003090 Ian M. Wanless, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v9i1r12">A Generalization of Transversals for Latin Squares</a>, Electronic Journal of Combinatorics, volume 9, number 1 (2002), R12.
%H A003090 M. B. Wells, <a href="/A000170/a000170.pdf">Elements of Combinatorial Computing</a>, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
%H A003090 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%Y A003090 Cf. A000315, A002860, A040082.
%K A003090 nonn,nice,hard
%O A003090 1,4
%A A003090 _N. J. A. Sloane_
%E A003090 a(9)-a(10) (from the McKay-Meynert-Myrvold article) from _Richard Bean_, Feb 17 2004
%E A003090 a(11) from  Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009