This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003120 M0836 #106 Apr 13 2022 13:25:16 %S A003120 1,1,2,3,7,13,31,66,159,365,900,2162,5417,13436,34165,86603,223028, %T A003120 574493,1495524,3900055,10246172,26982966,71447432,189664782, %U A003120 505605729,1351179886,3623051567,9737403960,26243202664,70878565004 %N A003120 Number of rooted trees with n nodes and omega-valency 1. %C A003120 Draw the tree with the root at the bottom. The omega-valency of a leaf is 1; the omega-valency of any other vertex v is max(1,sum(omega-valence(s))-1) where the sum is over the vertices directly above v. Then the omega-valency of the tree itself is the omega-valency of the root. [_F. Chapoton_, Jul 25 2011; _N. J. A. Sloane_, Jul 27 2011] %C A003120 Other names: Number of arborescences of type (n,1), or tapeworms. %C A003120 Let phi_n denote the number of rooted trees on n nodes whose comparability graph is Hamiltonian. Then phi_1=1, phi_n = a(n-1) for n >= 2. [Arditti] %D A003120 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003120 J.-C. Arditti, <a href="http://dx.doi.org/10.1016/0012-365X(73)90135-0">Dénombrement des arborescences dont le graphe de comparabilité est Hamiltonien</a>, Discrete Math., 5 (1973), 189-200. %H A003120 F. Harary and R. W. Robinson, <a href="/A001333/a001333_2.pdf">Tapeworms</a>, Unpublished manuscript, circa 1973. (Annotated scanned copy) %H A003120 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A003120 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992 %H A003120 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A003120 The generating function is probably not rational. - _F. Chapoton_, Jul 26 2011 %F A003120 The g.f. -(z-1)*(3*z**2+z-1)/(-1+3*z+z**2-7*z**3+3*z**4) conjectured by _Simon Plouffe_ in his 1992 dissertation is wrong (starting from index 11). %e A003120 For n=4, the 3 rooted trees are %e A003120 O O O %e A003120 | / \ | %e A003120 | | / \ %e A003120 | %p A003120 (Maple program from _N. J. A. Sloane_, Jul 27 2011, based on Eq. (2) of the Arditti paper. This proceeds in very small steps because I was trying to isolate the error in that formula. The error turns out to be in the display following (2): this is not phi(x). Otherwise Eq. (2) is correct.) %p A003120 S:=x*y + x^2*y + 2*x^3*y + x^4*(3*y+y^2) + x^5*(7*y+y^2+y^3); %p A003120 M:=30; %p A003120 for n from 6 to M do %p A003120 t5:=series(series(S,y,n),x,n+1); %p A003120 t6:=add( subs(x=x^k,subs(y=y^k,t5))/k, k=1..n+1); %p A003120 t7:=series(series(t6,y,n),x,n+1); %p A003120 t8:=(x/y)*(exp(t7)-1); %p A003120 t9:=series(series(t8,y,n),x,n+1); %p A003120 xf1:=subs(y=0,series(t5/y,y,n)); %p A003120 t10:=series(series(xf1,y,n),x,n+1); %p A003120 t11:=series(series(t9-x*t10,y,n),x,n+1); %p A003120 t12:=series(series(t11+x*y*t10+x*y,y,n),x,n+1); %p A003120 t13:=coeff(t12,x,n); %p A003120 S:=S+x^n*t13; %p A003120 od: %p A003120 xf1:=subs(y=0,series(S/y,y,M+1)); %p A003120 series(%,x,M+1); %p A003120 seriestolist(%); %o A003120 (Sage) %o A003120 def A003120_list(n): %o A003120 a = polygen(QQ, 'a') %o A003120 an = FractionField(a.parent()) %o A003120 ri = PowerSeriesRing(an, 'x') %o A003120 x = ri.gen() %o A003120 t = ri.zero().O(1) %o A003120 v = ri.zero().O(1) %o A003120 for l in range(n): %o A003120 truc = ri.zero() %o A003120 for k in range(1, l + 1): %o A003120 truc += ri([u(a=a**k) for u in t(x**k).truncate(l+1)]) / k %o A003120 t = a*x+x*v+x*(t-v)/a-x/a*(t+1)+x*(exp(truc))/a %o A003120 v = a*ri([u(a=0) for u in t/a]) %o A003120 return (v / a).coefficients() %o A003120 A003120_list(33) # _F. Chapoton_, Jul 26 2011 %Y A003120 Cf. A193487, A193488, A193489, A193490, A193491. %K A003120 nonn,nice,easy %O A003120 1,3 %A A003120 _N. J. A. Sloane_ %E A003120 Corrected by _F. Chapoton_, Jul 26 2011 %E A003120 Confirmed and extended to n = 30 by _N. J. A. Sloane_, Jul 27 2011