This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003148 M4389 #65 Apr 02 2025 03:05:02 %S A003148 1,1,7,27,321,2265,37575,390915,8281665,114610545,2946939975, %T A003148 51083368875,1542234996225,32192256321225,1114841223671175, %U A003148 27254953356505875,1064057291370698625,29845288035840902625,1296073464766972266375,41049997128507054562875 %N A003148 a(n+1) = a(n) + 2n*(2n+1)*a(n-1), with a(0) = a(1) = 1. %C A003148 Numerators of sequence of fractions with e.g.f. 1/((1-x)*(1+x)^(1/2)). The denominators are successive powers of 2. %C A003148 a(n) is the coefficient of x^n in arctan(sqrt(2*x/(1-x)))/sqrt(2*x*(1-x)) multiplied by (2*n+1)!!. %C A003148 This sequence is the linking pin between the a(n) formulas of the ED1, ED2, ED3 and ED4 array rows, see A167552, A167565, A167580 and A167591. - _Johannes W. Meijer_, Nov 23 2009 %D A003148 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003148 T. D. Noe, <a href="/A003148/b003148.txt">Table of n, a(n) for n = 0..100</a> %H A003148 P. S. Bruckman, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/10-2/bruckman.pdf">An interesting sequence of numbers derived from various generating functions</a>, Fib. Quart., 10 (1972), 169-181. %H A003148 R. J. Mathar, <a href="https://arxiv.org/abs/math/0306184">Numerical Representation of the Incomplete Gamma Function of Complex Argument</a>, arXiv:math/0306184 [math.NA], 2003-2004; cf. Eq. 22. %F A003148 a(n) = (-1)^n*(2n-1)!! + 2*n*a(n-1) with (2n-1)!! = 1*3*5*..*(2n-1) the double factorial. - _R. J. Mathar_, Jun 12 2003 %F A003148 a(n) = ((2*n+1)!!/4) * Integral_{-Pi..Pi} cos(x)^n * cos(x/2) dx. - _R. J. Mathar_, Jun 30 2003 %F A003148 a(n) = (2n+1)!! 2F1(-n, 1/2;3/2;2). - _R. J. Mathar_, Jun 30 2003 %F A003148 In terms of the (terminating) Gauss hypergeometric function/series, 2F1(., .; .; 2), a(n) is a special case of the family of integer sequences defined by a(m, n) = ((2*n+2*m+1)!!/(2*m+1)) * 2F1(-n, m+1/2; m+3/2; 2), for m >= 0, n >= 0. An integral form can be seen as a(m, n) = ((2*n+2*m+1)!!/4) * Integral_{-Pi..Pi} (sin(x/2))^(2*m) * (cos(x))^n * cos(x/2) dx. A recurrence property is 4*(n+1)*a(m, n) = (2*m-1)*a(m-1, n+1) + (-1)^n*(2*n+2*m+1)!!. Sequences that have these properties are a(0, n) = this sequence, a(1, n) = A077568, a(2, n) = A084543. - _R. J. Mathar_, Jun 30 2003 %F A003148 E.g.f.: 1/(sqrt(1+2*x)*(1-2*x)). - _Vladeta Jovovic_, Oct 12 2003 %F A003148 a(n) = (2^n)*n!*A123746(n)/A046161(n) = (2^n)*n!*Sum_{k=0..n} binomial(2*k,k)*(-1/4)^k. From the e.g.f. - _Wolfdieter Lang_, Oct 06 2008 %F A003148 a(n) = A049606(n)*A123746(n). - _Johannes W. Meijer_, Nov 23 2009 %F A003148 a(n) = A091520(n) * n! / 2^n. - _Michael Somos_, Mar 17 2011 %e A003148 arctan(sqrt(2*x/(1-x)))/sqrt(2*x*(1-x)) = 1 + 1/3*x + 7/15*x^2 + 9/35*x^3 + ... %p A003148 # double factorial of odd "l" df := proc(l) local n; n := iquo(l,2); RETURN( factorial(l)/2^n/factorial(n)); end: x := 1; for n from 1 to 15 do if n mod 2 = 0 then x := 2*n*x+df(2*n-1); else x := 2*n*x-df(2*n-1); fi; print(x); od; quit %t A003148 a[n_] := a[n] = (-1)^n*(2n - 1)!! + 2n*a[n - 1]; a[0] = 1; Table[ a[n], {n, 0, 14}] (* _Jean-François Alcover_, Dec 01 2011, after _R. J. Mathar_ *) %t A003148 a[ n_] := If[ n < 0, 0, (2 n + 1)!! Hypergeometric2F1[ -n, 1/2, 3/2, 2]]; (* _Michael Somos_, Apr 20 2018 *) %t A003148 a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / ((1 - 2 x) Sqrt[1 + 2 x]), {x, 0, n}]]; (* _Michael Somos_, Apr 20 2018 *) %t A003148 RecurrenceTable[{a[0]==a[1]==1,a[n+1]==a[n]+2n(2n+1)a[n-1]},a,{n,20}] (* _Harvey P. Dale_, Jul 27 2019 *) %o A003148 (Haskell) %o A003148 a003148 n = a003148_list !! n %o A003148 a003148_list = 1 : 1 : zipWith (+) (tail a003148_list) %o A003148 (zipWith (*) (tail a002943_list) a003148_list) %o A003148 -- _Reinhard Zumkeller_, Nov 22 2011 %o A003148 (PARI) Vec(serlaplace(1/(sqrt(1+2*x + O(x^20))*(1-2*x)))) \\ _Andrew Howroyd_, Feb 05 2018 %o A003148 (Magma) [n le 2 select 1 else Self(n-1) + 2*(n-2)*(2*n-3)*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Nov 04 2022 %o A003148 (SageMath) %o A003148 @CachedFunction %o A003148 def a(n): return 1 if (n<2) else a(n-1) + 2*(n-1)*(2*n-1)*a(n-2) # a = A003148 %o A003148 [a(n) for n in range(31)] # _G. C. Greubel_, Nov 04 2022 %Y A003148 Cf. A002943, A046161, A049606, A077568, A084543, A091520, A123746. %Y A003148 Cf. A167552, A167565, A167580, A167591. %K A003148 nonn,nice,easy %O A003148 0,3 %A A003148 _N. J. A. Sloane_ %E A003148 a(16)-a(20) from _Andrew Howroyd_, Feb 05 2018