This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003152 M2392 #70 May 24 2025 16:19:17 %S A003152 1,3,5,6,8,10,11,13,15,17,18,20,22,23,25,27,29,30,32,34,35,37,39,40, %T A003152 42,44,46,47,49,51,52,54,56,58,59,61,63,64,66,68,69,71,73,75,76,78,80, %U A003152 81,83,85,87,88,90,92,93,95,97,99,100,102,104,105,107,109,110,112,114,116 %N A003152 A Beatty sequence: a(n) = floor(n*(1+1/sqrt(2))). %C A003152 Numbers with an even number of trailing 0's in their minimal representation in terms of the positive Pell numbers (A317204). - _Amiram Eldar_, Mar 16 2022 %C A003152 The indices of the squares in the sequence of squares and twice squares: A028982(a(n)) = n^2. - _Amiram Eldar_, Apr 13 2025 %D A003152 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003152 G. C. Greubel, <a href="/A003152/b003152.txt">Table of n, a(n) for n = 1..10000</a> %H A003152 Leonard Carlitz, Richard Scoville, and Verner E. Hoggatt, Jr., <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/10-5/carlitz1.pdf">Pellian representations</a>, Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 449-488. %H A003152 Joshua N. Cooper and Alexander W. N. Riasanovsky, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Cooper/cooper3.html">On the Reciprocal of the Binary Generating Function for the Sum of Divisors</a>, J. Int. Seq., Vol. 16 (2013), Article 13.1.8; <a href="http://www.math.sc.edu/~cooper/Sigma.pdf">preprint</a>, 2012. %H A003152 N. J. A. Sloane, <a href="/A115004/a115004.txt">Families of Essentially Identical Sequences</a>, Mar 24 2021 (Includes this sequence). %H A003152 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>. %p A003152 Digits := 100: t := evalf(1+sin(Pi/4)): A:= n->floor(t*n): seq(floor((t*n)),n=1..68); # _Zerinvary Lajos_, Mar 27 2009 %t A003152 Table[Floor[n (1 + 1/Sqrt[2])], {n, 70}] (* _Vincenzo Librandi_, Dec 26 2015 *) %o A003152 (Magma) [Floor(n*(1+1/Sqrt(2))): n in [1..70]]; // _Vincenzo Librandi_, Dec 26 2015 %o A003152 (PARI) a(n)=n+sqrtint(2*n^2)\2 \\ _Charles R Greathouse IV_, Jan 25 2022 %o A003152 (Python) %o A003152 from math import isqrt %o A003152 def A003152(n): return n+isqrt(n**2>>1) # _Chai Wah Wu_, May 24 2025 %Y A003152 Complement of A003151. %Y A003152 Cf. A028982, A109250, A317204. %Y A003152 The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - _N. J. A. Sloane_, Mar 09 2021 %Y A003152 Bisections: A001952, A001954. %K A003152 nonn,easy %O A003152 1,2 %A A003152 _N. J. A. Sloane_