A003157 A self-generating sequence (see Comments in A003156 for the definition).
3, 8, 11, 14, 19, 24, 29, 32, 35, 40, 43, 46, 51, 54, 57, 62, 67, 72, 75, 78, 83, 88, 93, 96, 99, 104, 109, 114, 117, 120, 125, 128, 131, 136, 139, 142, 147, 152, 157, 160
Offset: 1
Keywords
Examples
As a word, A286044 = 001000010010010000100..., in which 1 is in positions a(n) for n>=1. - _Clark Kimberling_, May 07 2017
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr., Representations for a special sequence, Fibonacci Quarterly 10.5 (1972), 499-518, 550.
Programs
-
Mathematica
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 9] (* Thue-Morse, A010060 *) w = StringJoin[Map[ToString, s]] w1 = StringReplace[w, {"011" -> "0"}] st = ToCharacterCode[w1] - 48 (* A286044 *) Flatten[Position[st, 0]] (* A286045 *) Flatten[Position[st, 1]] (* A003157 *) (* Clark Kimberling, May 07 2017 *)
-
Python
def A003157(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, s = n+x, bin(x)[2:] l = len(s) for i in range(l&1,l,2): c -= int(s[i])+int('0'+s[:i],2) return c return bisection(f,n,n)+n # Chai Wah Wu, Jan 29 2025
Formula
Numbers n such that A003159(n) is even. a(n) = A003158(n) + 1 = A036554(n) + n. - Philippe Deléham, Feb 22 2004
Comments