This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003168 M3574 #123 Jan 05 2025 19:51:33 %S A003168 1,1,4,21,126,818,5594,39693,289510,2157150,16348960,125642146, %T A003168 976789620,7668465964,60708178054,484093913917,3884724864390, %U A003168 31348290348086,254225828706248,2070856216759478,16936016649259364 %N A003168 Number of blobs with 2n+1 edges. %C A003168 a(n) is the number of ways to dissect a convex (2n+2)-gon with non-crossing diagonals so that no (2m+1)-gons (m>0) appear. - _Len Smiley_ %C A003168 a(n) is the number of plane trees with 2n+1 leaves and all non-leaves having an odd number > 1 of children. - _Jordan Tirrell_, Jun 09 2017 %C A003168 a(n) is the number of noncrossing cacti with n+1 nodes. See A361242. - _Andrew Howroyd_, Mar 07 2023 %D A003168 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003168 Seiichi Manyama, <a href="/A003168/b003168.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..100 from T. D. Noe) %H A003168 Thomas H. Bertschinger, Joseph Slote, Olivia Claire Spencer, and Samuel Vinitsky, <a href="https://joeslote.com/documents/origami_undergrad_thesis.pdf">The Mathematics of Origami</a>, Undergrad Thesis, Carleton College (2016). %H A003168 D. Birmajer, J. B. Gil, and M. D. Weiner, <a href="http://arxiv.org/abs/1503.05242">Colored partitions of a convex polygon by noncrossing diagonals</a>, arXiv preprint arXiv:1503.05242 [math.CO], 2015. %H A003168 L. Carlitz, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/11-2/carlitz.pdf">Enumeration of two-line arrays</a>, Fib. Quart., Vol. 11 Number 2 (1973), 113-130. %H A003168 Frédéric Chapoton and Philippe Nadeau, <a href="http://www.mat.univie.ac.at/~slc/wpapers/FPSAC2017/37%20Chapoton%20Nadeau.pdf">Combinatorics of the categories of noncrossing partitions</a>, Séminaire Lotharingien de Combinatoire 78B (2017), Article #37. %H A003168 Michael Drmota, Anna de Mier, and Marc Noy, <a href="http://www.dmg.tuwien.ac.at/drmota/noncrossingFinal4.pdf">Extremal statistics on non-crossing configurations</a>, Discrete Math. 327 (2014), 103--117. MR3192420. See p. 116, B_b(z). - N. J. A. Sloane, May 18 2014 %H A003168 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=415">Encyclopedia of Combinatorial Structures 415</a> %H A003168 Elżbieta Liszewska and Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019. %H A003168 Jean-Christophe Novelli and Jean-Yves Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv preprint arXiv:1403.5962 [math.CO], 2014. %H A003168 Jean-Christophe Novelli and Jean-Yves Thibon, <a href="https://arxiv.org/abs/2106.08257">Noncommutative Symmetric Functions and Lagrange Inversion II: Noncrossing partitions and the Farahat-Higman algebra</a>, arXiv:2106.08257 [math.CO], 2021-2022. %H A003168 Ronald C. Read, <a href="https://doi.org/10.1007/BF02188172">On the enumeration of a class of plane multigraphs</a>, Aequat. Math. 31 (1986) No. 1, 47-63. %H A003168 L. Smiley, <a href="http://www.math.uaa.alaska.edu/~smiley/vsd2.html">Even-gon reference</a> %H A003168 Jun Yan, <a href="https://arxiv.org/abs/2404.07958">Results on pattern avoidance in parking functions</a>, arXiv:2404.07958 [math.CO], 2024. See p. 30. %F A003168 a(n) = Sum_{k=1..n} binomial(n, k)*binomial(2*n+k, k-1)/n. %F A003168 G.f.: A(x) = Sum_{n>=0} a(n)*x^(2*n+1) satisfies (A-2*A^3)/(1-A^2)=x. - _Len Smiley_. %F A003168 D-finite with recurrence 4*n*(2*n + 1)*(17*n - 22)*a(n) = (1207*n^3 - 2769*n^2 + 1850*n - 360)*a(n - 1) - 2*(17*n - 5)*(n - 2)*(2*n - 3)*a(n - 2). - _Vladeta Jovovic_, Jul 16 2004 %F A003168 G.f.: A(x) = 1/(1-G003169(x)) where G003169(x) is the g.f. of A003169. - _Paul D. Hanna_, Nov 17 2004 %F A003168 a(n) = JacobiP(n-1,1,n+1,3)/n for n > 0. - _Mark van Hoeij_, Jun 02 2010 %F A003168 a(n) = (1/(2*n+1))*Sum_{j=0..n} (-1)^j*2^(n-j)*binomial(2*n+1,j)*binomial(3*n-j,2*n). - _Vladimir Kruchinin_, Dec 24 2010 %F A003168 From _Gary W. Adamson_, Jul 08 2011: (Start) %F A003168 a(n) = upper left term in M^n, M = the production matrix: %F A003168 1, 1 %F A003168 3, 3, 1 %F A003168 5, 5, 3, 1 %F A003168 7, 7, 5, 3, 1 %F A003168 9, 9, 7, 5, 3, 1 %F A003168 ... (End) %F A003168 a(n) ~ sqrt(14+66/sqrt(17)) * (71+17*sqrt(17))^n / (sqrt(Pi) * n^(3/2) * 2^(4*n+4)). - _Vaclav Kotesovec_, Jul 01 2015 %F A003168 From _Peter Bala_, Oct 05 2015: (Start) %F A003168 a(n) = (1/n) * Sum_{i = 0..n} 2^(n-i-1)*binomial(2*n,i)* binomial(n,i+1). %F A003168 O.g.f. = 1 + series reversion( x/((1 + 2*x)*(1 + x)^2) ). %F A003168 Logarithmically differentiating the modified g.f. 1 + 4*x + 21*x^2 + 126*x^3 + 818*x^4 + ... gives the o.g.f. for A114496, apart from the initial term. (End) %F A003168 G.f.: A(x) satisfies A = 1 + x*A^3/(1-x*A^2). - _Jordan Tirrell_, Jun 09 2017 %F A003168 a(n) = A100327(n)/2 for n>=1. - _Peter Luschny_, Jun 10 2017 %e A003168 a(2)=4 because we may place exactly one diagonal in 3 ways (forming 2 quadrilaterals), or not place any (leaving 1 hexagon). %p A003168 Order := 40; solve(series((A-2*A^3)/(1-A^2),A)=x,A); %p A003168 A003168 := n -> `if`(n=0,1,A100327(n)/2): seq(A003168(n),n=0..20); # _Peter Luschny_, Jun 10 2017 %t A003168 a[0] = 1; a[n_] = (2^(-n-1)*(3n)!* Hypergeometric2F1[-1-2n, -2n, -3n, -1])/((2n+1)* n!*(2n)!); Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jul 25 2011, after _Vladimir Kruchinin_ *) %o A003168 (PARI) a(n)=if(n<0,0,polcoeff(serreverse((x-2*x^3)/(1-x^2)+O(x^(2*n+2))),2*n+1)) %o A003168 (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=(1+x*A)/(1-x*A)^2); sum(k=0,n,polcoeff(A^(n-k),k))} \\ _Paul D. Hanna_, Nov 17 2004 %o A003168 (PARI) seq(n) = Vec( 1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n)) ) \\ _Andrew Howroyd_, Mar 07 2023 %o A003168 (Haskell) %o A003168 import Data.List (transpose) %o A003168 a003168 0 = 1 %o A003168 a003168 n = sum (zipWith (*) %o A003168 (tail $ a007318_tabl !! n) %o A003168 ((transpose $ take (3*n+1) a007318_tabl) !! (2*n+1))) %o A003168 `div` fromIntegral n %o A003168 -- _Reinhard Zumkeller_, Oct 27 2013 %Y A003168 Cf. A049124 (no 2m-gons). %Y A003168 Cf. A003169, A100327, A114496, A007318, A361242. %Y A003168 Row sums of A102537, A243662. Column 2 of A336573. %K A003168 nonn,easy,nice %O A003168 0,3 %A A003168 _N. J. A. Sloane_