This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003179 M0289 #51 Feb 03 2020 09:11:17 %S A003179 1,1,1,1,2,2,3,4,7,9,16,25,55,103,261,731,3295,24147,519492 %N A003179 Number of self-dual binary codes of length 2n (up to column permutation equivalence). %C A003179 The length 36 binary self dual codes have been classified. - _Nathan J. Russell_, Feb 14 2016 %C A003179 This is number of binary self-dual codes of length 2n up to column permutation equivalence. Sequence A028362 gives an actual count of all possible binary self-dual codes of length 2n. - _Nathan J. Russell_, Nov 25 2018 %D A003179 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003179 R. T. Bilous and G. H. J. van Rees, <a href="http://ftp.cs.umanitoba.ca/~vanrees/bil.pdf">An enumeration of binary self-dual codes of length 32</a>, preprint. %H A003179 R. T. Bilous and G. H. J. van Rees, <a href="http://dx.doi.org/10.1023/A:1016544907275">An enumeration of binary self-dual codes of length 32</a>, Designs, Codes Crypt., 26 (2002), 61-86. %H A003179 J. H. Conway and V. S. Pless, <a href="http://dx.doi.org/10.1016/0097-3165(80)90057-6">On the enumeration of self-dual codes</a>, J. Comb. Theory, A28 (1980), 26-53. <a href="http://www.ams.org/mathscinet-getitem?mr=558873">MR0558873</a> %H A003179 J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (<a href="http://neilsloane.com/doc/pless.txt">Abstract</a>, <a href="http://neilsloane.com/doc/pless.pdf">pdf</a>, <a href="http://neilsloane.com/doc/pless.ps">ps</a>, <a href="http://neilsloane.com/doc/plesstaba.ps">Table A</a>, <a href="http://neilsloane.com/doc/plesstabd.ps">Table D</a>). %H A003179 Masaaki Harada and Akihiro Munemasa, <a href="http://arxiv.org/abs/1012.5464">Classification of Self-Dual Codes of Length 36</a>, arXiv:1012.5464 [math.CO], 2010-2012. %H A003179 W. C. Huffman, <a href="http://dx.doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic. 11 (2005), 451-490. %H A003179 W. Cary Huffman and Vera Pless, <a href="https://doi.org/10.1017/CBO9780511807077">Fundamentals of Error Correcting Codes</a>, Cambridge University Press, 2003, Pages 7,252-282,338-393. %H A003179 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006. %H A003179 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>). %Y A003179 Cf. A003178, A028362, A028363, A105685. Equals A106163 + A106165. %K A003179 nonn,hard,more,nice %O A003179 0,5 %A A003179 _N. J. A. Sloane_ %E A003179 a(18) from _Nathan J. Russell_, Feb 14 2016 %E A003179 Name clarified by _Nathan J. Russell_, Nov 26 2018