This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003180 M1265 N1405 #90 Aug 22 2022 04:01:30 %S A003180 2,4,12,80,3984,37333248,25626412338274304, %T A003180 67516342973185974328175690087661568, %U A003180 2871827610052485009904013737758920847669809829897636746529411152822140928 %N A003180 Number of equivalence classes of Boolean functions of n variables under action of symmetric group. %C A003180 A003180(n-1) is the number of equivalence classes of Boolean functions of n variables from Post class F(8,inf) under action of symmetric group. %C A003180 Also number of nonisomorphic sets of subsets of an n-set. %C A003180 Also the number of unlabeled hypergraphs on n nodes [Qian]. - _N. J. A. Sloane_, May 12 2014 %C A003180 The number of unlabeled hypergraphs with empty hyperedges allowed on n nodes. Compare with A000612 where empty hyperedges are not allowed. - _Michael Somos_, Feb 15 2019 %C A003180 In the 1995 Encyclopedia of Integer Sequences this sequence appears twice, as both M1265 and M3458 (one entry began at n=0, the other at n=1). %D A003180 M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 147. %D A003180 D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79. %D A003180 S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 5. %D A003180 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A003180 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003180 Vladeta Jovovic, <a href="/A003180/b003180.txt">Table of n, a(n) for n = 0..11</a> %H A003180 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018. %H A003180 Toru Ishihara, <a href="https://doi.org/10.1006/eujc.2001.0498">Enumeration of hypergraphs</a>, European Journal of Combinatorics, Volume 22, Issue 4, May 2001. %H A003180 S. Muroga, <a href="/A000371/a000371.pdf">Threshold Logic and Its Applications</a>, Wiley, NY, 1971. [Annotated scans of a few pages] %H A003180 Jianguo Qian, <a href="https://doi.org/10.1016/j.disc.2014.03.005">Enumeration of unlabeled uniform hypergraphs</a>, Discrete Math. 326 (2014), 66--74. MR3188989. See Table 1, p. 71. - _N. J. A. Sloane_, May 12 2014 %H A003180 Marko Riedel, <a href="https://math.stackexchange.com/questions/2732440/">Cycle indices for the enumeration of non-isomorphic hypergraphs</a>, Mathematics Stack Exchange, 2018. %H A003180 Marko Riedel, <a href="/A003180/a003180_4.maple.txt">Implementation of the Ishihara algorithm for cycle indices of the action of the symmetric group S_n on sets of subsets of an n-set.</a> %H A003180 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a> %F A003180 a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 2^Sum_{i>=1} ( Sum_{d|i} ( mu(i/d)*( 2^Sum_{j>=1} ( gcd(j, d)*s_j))))/i. %F A003180 a(n) = 2 * A000612(n). %e A003180 From _Gus Wiseman_, Aug 05 2019: (Start) %e A003180 Non-isomorphic representatives of the a(0) = 2 through a(2) = 12 sets of subsets: %e A003180 {} {} {} %e A003180 {{}} {{}} {{}} %e A003180 {{1}} {{1}} %e A003180 {{},{1}} {{1,2}} %e A003180 {{},{1}} %e A003180 {{1},{2}} %e A003180 {{},{1,2}} %e A003180 {{2},{1,2}} %e A003180 {{},{1},{2}} %e A003180 {{},{2},{1,2}} %e A003180 {{1},{2},{1,2}} %e A003180 {{},{1},{2},{1,2}} %e A003180 (End) %p A003180 with(numtheory):with(combinat): %p A003180 for n from 1 to 10 do %p A003180 p:=partition(n): s:=0: for k from 1 to nops(p) do q:=convert(p[k],multiset): for i from 0 to n do a(i):=0: od: %p A003180 for i from 1 to nops(q) do a(q[i][1]):=q[i][2]: od: %p A003180 c:=1: ord:=1: for i from 1 to n do c:=c*a(i)!*i^a(i):ord:=lcm(ord,i): od: ss:=0: %p A003180 for i from 1 to ord do if ord mod i=0 then ss:=ss+phi(ord/i)*2^add(gcd(j,i)*a(j),j=1..n): fi: od: %p A003180 s:=s+2^(ss/ord)/c: %p A003180 od: %p A003180 printf(`%d `,n): %p A003180 printf("%d ",s): %p A003180 od: # _Vladeta Jovovic_, Sep 19 2006 %t A003180 a[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[ 2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}]; %t A003180 a /@ Range[0, 11] (* _Jean-François Alcover_, Feb 19 2020, after _Alois P. Heinz_ in A000612 *) %t A003180 fix[s_] := 2^Sum[Sum[MoebiusMu[i/d] 2^Sum[GCD[j, d] s[j], {j, Keys[s]}], {d, Divisors[i]}]/i, {i, LCM @@ Keys[s]}]; %t A003180 a[0] = 2; %t A003180 a[n_] := Sum[fix[s]/Product[j^s[j] s[j]!, {j, Keys[s]}], {s, Counts /@ IntegerPartitions[n]}]; %t A003180 Table[a[n], {n, 0, 8}] %t A003180 (* _Andrey Zabolotskiy_, Mar 24 2020, after _Christian G. Bower_'s formula; requires Mathematica 10+ *) %Y A003180 Twice A000612. Cf. A001146. Row sums of A052265. %Y A003180 Cf. A003181, A055621. %K A003180 nonn,nice %O A003180 0,1 %A A003180 _N. J. A. Sloane_ %E A003180 More terms from _Vladeta Jovovic_, Sep 19 2006 %E A003180 Edited with formula by _Christian G. Bower_, Jan 08 2004