A003184 Number of NP-equivalence classes of self-dual threshold functions of exactly n variables.
1, 0, 1, 1, 4, 14, 114, 2335, 172958, 52805196
Offset: 1
References
- H. M. Gurk and J. R. Isbell. 1959. Simple Solutions. In A. W. Tucker and R. D. Luce (eds.) Contributions to the Theory of Games, Volume 4. Princeton, NJ: Princeton University Press, pp. 247-265. Case n=6.
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 24. (Cases n>7.)
- J. von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton University Press, New Jersey, 1944. Cases n=1 to 5.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- J. R. Isbell, On the enumeration of majority games, MTAC, v. 13, 1959, pp. 21-28. (Case n=7.)
- Alastair D. King, Comments on A002080 and related sequences based on threshold functions, Mar 17 2023.
- S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
- S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
- Index entries for sequences related to Boolean functions
Formula
Extensions
a(9) from Evgeny Luttsev, Sep 09 2014
Better description and new offset from Alastair King, Mar 17 2023