This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003211 M4192 #34 May 21 2025 10:44:17 %S A003211 1,6,30,114,438,1542,5754,19574,71958,233574,870666,2696274,10375770, %T A003211 30198116,122634404,327024444,1460721616,3347244554,17795165832 %N A003211 Cluster series for cubic lattice. %D A003211 J. W. Essam, Percolation and cluster size, in C. Domb and M. S. Green, Phase Transitions and Critical Phenomena, Ac. Press 1972, Vol. 2; see especially pp. 225-226. %D A003211 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003211 John Adler, <a href="https://doi.org/10.1063/1.168493">Series Expansions</a>, Computers in Physics, 8 (1994), 287-295. %H A003211 S. Luther and S. Mertens, <a href="https://doi.org/10.1088/1742-5468/2011/09/P09026">Counting lattice animals in high dimensions</a>, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565; arXiv:<a href="https://arxiv.org/abs/1106.1078">1106.1078</a> [cond-mat.stat-mech], 2011. See Table 5. %H A003211 Stephan Mertens, <a href="https://wasd.urz.uni-magdeburg.de/mertens/research/animals/">Lattice Animals</a> %H A003211 M. F. Sykes and J. W. Essam, <a href="https://doi.org/10.1103/PhysRev.133.A310">Critical percolation probabilities by series methods</a>, Phys. Rev., 133 (1964), A310-A315. %H A003211 <a href="/index/Cl#cluster">Index entries for sequences related to cluster series</a>. %Y A003211 Cf. A003209 (f.c.c.), A003210 (b.c.c.), A003212 (diamond), A003207 (bond percolation). %Y A003211 Row 32 of A383735. %K A003211 nonn,more %O A003211 0,2 %A A003211 _N. J. A. Sloane_ %E A003211 a(9)-a(12) from _Sean A. Irvine_, Aug 19 2020 %E A003211 a(13)-a(18) from Luther & Mertens added by _Andrey Zabolotskiy_, Feb 02 2022