This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003234 M2714 #42 Jan 05 2025 19:51:33 %S A003234 3,8,11,16,19,21,24,29,32,37,42,45,50,53,55,58,63,66,71,74,76,79,84, %T A003234 87,92,97,100,105,108,110,113,118,121,126,129,131,134,139,142,144,147, %U A003234 152,155,160,163,165,168,173,176,181,186,189,194,197,199,202,207 %N A003234 Numbers k such that A003231(A001950(k)) = A001950(A003231(k)) - 1. %C A003234 See 3.3 p. 344 in Carlitz link. - _Michel Marcus_, Feb 02 2014 %C A003234 This is the function named s in [Carlitz]. - _Eric M. Schmidt_, Aug 14 2014 %D A003234 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003234 L. Carlitz, R. Scoville and T. Vaughan, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/11-4/carlitz.pdf">Some arithmetic functions related to Fibonacci numbers</a>, Fib. Quart., 11 (1973), 337-386. %p A003234 A003234 := proc(n) %p A003234 option remember; %p A003234 if n =1 then %p A003234 3; %p A003234 else %p A003234 for a from procname(n-1)+1 do %p A003234 if A003231(A001950(a)) = A001950(A003231(a))-1 then %p A003234 return a; %p A003234 end if; %p A003234 end do: %p A003234 end if; %p A003234 end proc: %p A003234 seq(A003234(n),n=1..80) ; # _R. J. Mathar_, Jul 16 2024 %t A003234 a3[n_] := Floor[n (Sqrt[5] + 3)/2]; %t A003234 a5[n_] := Floor[n (Sqrt[5] + 5)/2]; %t A003234 Select[Range[300], a5[a3[#]] == a3[a5[#]]-1&] (* _Jean-François Alcover_, Jul 31 2018 *) %o A003234 (PARI) A001950(n) = floor(n*(sqrt(5)+3)/2); %o A003234 A003231(n) = floor(n*(sqrt(5)+5)/2); %o A003234 isok(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1; \\ _Michel Marcus_, Feb 02 2014 %o A003234 (Haskell) %o A003234 a003234 n = a003234_list !! (n-1) %o A003234 a003234_list = [x | x <- [1..], %o A003234 a003231 (a001950 x) == a001950 (a003231 x) - 1] %o A003234 -- _Reinhard Zumkeller_, Oct 03 2014 %o A003234 (Python) %o A003234 from math import isqrt %o A003234 from itertools import count, islice %o A003234 def A003234_gen(startvalue=1): # generator of terms >= startvalue %o A003234 return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)+1==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k,count(max(1,startvalue))) %o A003234 A003234_list = list(islice(A003234_gen(),30)) # _Chai Wah Wu_, Sep 02 2022 %Y A003234 Cf. A001950, A003231. %K A003234 nonn %O A003234 1,1 %A A003234 _N. J. A. Sloane_ %E A003234 More terms from _Michel Marcus_, Feb 02 2014 %E A003234 Definition from _Michel Marcus_ moved from comment to name by _Eric M. Schmidt_, Aug 17 2014