A003240 Number of partially achiral rooted trees.
1, 1, 2, 4, 8, 16, 31, 62, 120, 236, 454, 884, 1697, 3275, 6266, 12020, 22935, 43788, 83325, 158516, 300914, 570794, 1081157, 2045934, 3867617, 7304149, 13783221, 25984936, 48956715, 92155376, 173376484, 325919786, 612378787, 1149777034
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..3760 (terms 1..70 from Herman Jamke)
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Programs
-
PARI
t(n)=local(A=x); if(n<1, 0, for(k=1, n-1, A/=(1-x^k+x*O(x^n))^polcoeff(A, k)); polcoeff(A, n)) {n=100;Ty2=sum(i=0,100,t(i)*y^(2*i)); p=subst(y*Ty2/(y-Ty2),y,y+y*O(y^n));p=Pol(p,y); r=subst(Ty2*(y+p+(p^2-subst(p,y,y^2))/(2*y))/y^2,y,x+x*O(x^n)); for(I=1,n-2,print1(polcoeff(r,i)","))} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008
Formula
a(n) ~ c * d^n * n, where d = 1.8332964415228533737988849634129366404833316666328290543862325494628120733... is the root of the equation Sum_{k>=1} A000081(k) / d^(2*k-1) = 1 and c = 0.030410107348865811204534352170117292921782094079168428605205142049899... - Vaclav Kotesovec, Dec 13 2020
Extensions
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008