cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003241 Number of achiral rooted trees.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 26, 45, 71, 110, 168, 247, 351, 503, 700, 944, 1294, 1719, 2267, 2961, 3839, 4891, 6297, 7891, 9912, 12347, 15381, 18784, 23203, 28138, 34233, 41275, 49824, 59306, 71309, 84268, 100127, 118045, 139472, 162659
Offset: 1

Views

Author

Keywords

Comments

There may be an error in eq (37) in the Harary-Robinson paper. - R. J. Mathar, Sep 28 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    L := BFILETOLIST("b003238.txt") ;
    Pofxn := proc(n)
            global L;
            add( op(i,L)*x^(i+1),i=1..120) ;
            subs(x=x^n,%) ;
    end proc:
    P := Pofxn(1) ;
    Rn := proc(n)
            global L;
            (Pofxn(n-2)*Pofxn(2)+Pofxn(n-1)*Pofxn(1)-Pofxn(n))/x^(n-1) ;
    end proc:
    Px2 := Pofxn(2) ;
    Px3 := Pofxn(3) ;
    Px4 := Pofxn(4) ;
    # eq (37) seems not to work
    # R := 2*x+P^2/x^2+(1-x)*P/x*(Px2/x^2-1)-(P^2-Px2)/2/x -Px3/x^2-(Px2^2-Px4)/2/x^3 ;
    #use eqs (39)-(44) instead
    R := x+P+(P^2+Px2)/2/x+P*Px2/x^2+P*Px3/x^3+(Px2^2-Px4)/2/x^3 :
    # heuristics, adding up to R^(40) suffices for first 80 terms
    for n from 5 to 40 do
            R := R+Rn(n) :
    end do:
    taylor(R,x=0,80) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Sep 28 2011
  • Mathematica
    L = Cases[Import["https://oeis.org/A003238/b003238.txt", "Table"], {, }][[All, 2]];
    Pofxn[n_] := Sum[x^(i+1) L[[i]], {i, 1, 120}] /. x -> x^n;
    P = Pofxn[1];
    Rn[n_] := (1/x^(n-1))(Pofxn[2] Pofxn[n-2] + Pofxn[1] Pofxn[n-1] - Pofxn[n]);
    Px2 = Pofxn[2]; Px3 = Pofxn[3]; Px4 = Pofxn[4];
    R = (P^2 + Px2)/(2x) + (P Px2)/x^2 + (P Px3)/x^3 + P + (Px2^2 - Px4)/(2x^3) + x;
    For[n = 5, n <= 40, n++, R += Rn[n]];
    CoefficientList[R + O[x]^41, x] // Rest (* Jean-François Alcover, Apr 06 2020, from Maple *)

Extensions

Extended by R. J. Mathar, Sep 28 2011