A003241 Number of achiral rooted trees.
1, 1, 2, 4, 8, 15, 26, 45, 71, 110, 168, 247, 351, 503, 700, 944, 1294, 1719, 2267, 2961, 3839, 4891, 6297, 7891, 9912, 12347, 15381, 18784, 23203, 28138, 34233, 41275, 49824, 59306, 71309, 84268, 100127, 118045, 139472, 162659
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..80
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Programs
-
Maple
L := BFILETOLIST("b003238.txt") ; Pofxn := proc(n) global L; add( op(i,L)*x^(i+1),i=1..120) ; subs(x=x^n,%) ; end proc: P := Pofxn(1) ; Rn := proc(n) global L; (Pofxn(n-2)*Pofxn(2)+Pofxn(n-1)*Pofxn(1)-Pofxn(n))/x^(n-1) ; end proc: Px2 := Pofxn(2) ; Px3 := Pofxn(3) ; Px4 := Pofxn(4) ; # eq (37) seems not to work # R := 2*x+P^2/x^2+(1-x)*P/x*(Px2/x^2-1)-(P^2-Px2)/2/x -Px3/x^2-(Px2^2-Px4)/2/x^3 ; #use eqs (39)-(44) instead R := x+P+(P^2+Px2)/2/x+P*Px2/x^2+P*Px3/x^3+(Px2^2-Px4)/2/x^3 : # heuristics, adding up to R^(40) suffices for first 80 terms for n from 5 to 40 do R := R+Rn(n) : end do: taylor(R,x=0,80) ; gfun[seriestolist](%) ; # R. J. Mathar, Sep 28 2011
-
Mathematica
L = Cases[Import["https://oeis.org/A003238/b003238.txt", "Table"], {, }][[All, 2]]; Pofxn[n_] := Sum[x^(i+1) L[[i]], {i, 1, 120}] /. x -> x^n; P = Pofxn[1]; Rn[n_] := (1/x^(n-1))(Pofxn[2] Pofxn[n-2] + Pofxn[1] Pofxn[n-1] - Pofxn[n]); Px2 = Pofxn[2]; Px3 = Pofxn[3]; Px4 = Pofxn[4]; R = (P^2 + Px2)/(2x) + (P Px2)/x^2 + (P Px3)/x^3 + P + (Px2^2 - Px4)/(2x^3) + x; For[n = 5, n <= 40, n++, R += Rn[n]]; CoefficientList[R + O[x]^41, x] // Rest (* Jean-François Alcover, Apr 06 2020, from Maple *)
Extensions
Extended by R. J. Mathar, Sep 28 2011
Comments