cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003250 The number m such that A001950(m) = A003231(A003234(n)).

This page as a plain text file.
%I A003250 M3405 #19 Jan 05 2025 19:51:33
%S A003250 4,11,15,22,26,29,33,40,44,51,58,62,69,73,76,80,87,91,98,102,105,109,
%T A003250 116,120,127,134,138,145,149,152,156,163,167,174,178,181,185,192,196,
%U A003250 199,203,210,214,221,225,228,232,239,243,250,257,261,268,272,275,279
%N A003250 The number m such that A001950(m) = A003231(A003234(n)).
%C A003250 This is the function named z in [Carlitz]. - _Eric M. Schmidt_, Aug 14 2014
%D A003250 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A003250 L. Carlitz, R. Scoville and T. Vaughan, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/11-4/carlitz.pdf">Some arithmetic functions related to Fibonacci numbers</a>, Fib. Quart., 11 (1973), 337-386.
%F A003250 From _Eric M. Schmidt_, Aug 14 2014: (Start)
%F A003250 a(n) = ceiling((1/phi^2) * A003231(A003234(n))), where phi is the golden ratio.
%F A003250 a(n) = 5*k - 1 - A003231(k), where k = A003234(n). [Cf. Theorems 4.1(ii) and 5.9(vii) in Carlitz.]
%F A003250 Conjecture: a(n) = floor((3-phi)*A003234(n)).
%F A003250 (End)
%K A003250 nonn
%O A003250 1,1
%A A003250 _N. J. A. Sloane_
%E A003250 More terms and a definition from _Eric M. Schmidt_, Aug 14 2014