cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003262 Let y=f(x) satisfy F(x,y)=0. a(n) is the number of terms in the expansion of (d/dx)^n y in terms of the partial derivatives of F.

Original entry on oeis.org

1, 3, 9, 24, 61, 145, 333, 732, 1565, 3247, 6583, 13047, 25379, 48477, 91159, 168883, 308736, 557335, 994638, 1755909, 3068960, 5313318, 9118049, 15516710, 26198568, 43904123, 73056724, 120750102, 198304922, 323685343
Offset: 1

Views

Author

Keywords

Examples

			(d/dx)^2 y = -F_xx/F_y + 2*F_x*F_xy/F_y^2 - F_x^2*F_yy/F_y^3, where F_x denotes partial derivative with respect to x, etc. This has three terms, thus a(2)=3.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 175.
  • L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A098504.
Cf. A172004 (generalization to bivariate implicit functions).
Cf. A162326 (analogous sequence for implicit divided differences).
Cf. A172003 (bivariate variant).

Programs

  • Mathematica
    p[, ] = 0; q[, ] = 0; e = 30; For[m = 1, m <= e - 1, m++, For[d = 1, d <= m, d++, If[m == d*Floor[m/d], For[i = 0, i <= m/d + 1, i++, If[d*i <= e, q[m, i*d] = q[m, i*d] + 1/d]]]]]; For[j = 0, j <= e, j++, p[0, j] = 1]; For[n = 1, n <= e - 1, n++, For[s = 0, s <= n, s++, For[j = 0, j <= e, j++, For[i = 0, i <= j, i++, p[n, j] = p[n, j] + (1/n)*s*q[s, j - i]*p[n - s, i]]]]]; A003262 = Table[p[n - 1, n], {n, 1, e}](* Jean-François Alcover, after Tom Wilde *)
  • VBA
    ' Tom Wilde, Jan 19 2008
    Sub Calc_AofN_upto_E()
    E = 30
    ReDim p(0 To E - 1, 0 To E)
    ReDim q(0 To E - 1, 0 To E)
    For m = 1 To E - 1
      For d = 1 To m
        If m = d * Int(m / d) Then
          For i = 0 To m / d + 1
            If d * i <= E Then q(m, i * d) = q(m, i * d) + 1 / d
          Next
        End If
      Next
    Next
    For j = 0 To E
      p(0, j) = 1
    Next
    For n = 1 To E - 1
      For s = 0 To n
        For j = 0 To E
          For i = 0 To j
            p(n, j) = p(n, j) + 1 / n * s * q(s, j - i) * p(n - s, i)
          Next
        Next
      Next
    Next
    For n = 1 To E
       Debug.Print p(n - 1, n)
    Next
    End Sub

Formula

The generating function given by Comtet and Fiolet is incorrect.
a(n) = coefficient of t^n*u^(n-1) in Product_{i,j>=0,(i,j)<>(0,1)} (1 - t^i*u^(i+j-1))^(-1). - Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008

Extensions

More terms from Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008