A003262 Let y=f(x) satisfy F(x,y)=0. a(n) is the number of terms in the expansion of (d/dx)^n y in terms of the partial derivatives of F.
1, 3, 9, 24, 61, 145, 333, 732, 1565, 3247, 6583, 13047, 25379, 48477, 91159, 168883, 308736, 557335, 994638, 1755909, 3068960, 5313318, 9118049, 15516710, 26198568, 43904123, 73056724, 120750102, 198304922, 323685343
Offset: 1
Examples
(d/dx)^2 y = -F_xx/F_y + 2*F_x*F_xy/F_y^2 - F_x^2*F_yy/F_y^3, where F_x denotes partial derivative with respect to x, etc. This has three terms, thus a(2)=3.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 175.
- L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..500
- L. Comtet, Letter to N. J. A. Sloane, Mar 1974.
- L. Comtet and M. Fiolet, Number of terms in an nth derivative, C. R. Acad. Sc. Paris, t. 278 (21 janvier 1974), Serie A- 249-251. (Annotated scanned copy)
- T. Wilde, Implicit higher derivatives and a formula of Comtet and Fiolet, arXiv:0805.2674 [math.CO], 2008.
Crossrefs
Programs
-
Mathematica
p[, ] = 0; q[, ] = 0; e = 30; For[m = 1, m <= e - 1, m++, For[d = 1, d <= m, d++, If[m == d*Floor[m/d], For[i = 0, i <= m/d + 1, i++, If[d*i <= e, q[m, i*d] = q[m, i*d] + 1/d]]]]]; For[j = 0, j <= e, j++, p[0, j] = 1]; For[n = 1, n <= e - 1, n++, For[s = 0, s <= n, s++, For[j = 0, j <= e, j++, For[i = 0, i <= j, i++, p[n, j] = p[n, j] + (1/n)*s*q[s, j - i]*p[n - s, i]]]]]; A003262 = Table[p[n - 1, n], {n, 1, e}](* Jean-François Alcover, after Tom Wilde *)
-
VBA
' Tom Wilde, Jan 19 2008 Sub Calc_AofN_upto_E() E = 30 ReDim p(0 To E - 1, 0 To E) ReDim q(0 To E - 1, 0 To E) For m = 1 To E - 1 For d = 1 To m If m = d * Int(m / d) Then For i = 0 To m / d + 1 If d * i <= E Then q(m, i * d) = q(m, i * d) + 1 / d Next End If Next Next For j = 0 To E p(0, j) = 1 Next For n = 1 To E - 1 For s = 0 To n For j = 0 To E For i = 0 To j p(n, j) = p(n, j) + 1 / n * s * q(s, j - i) * p(n - s, i) Next Next Next Next For n = 1 To E Debug.Print p(n - 1, n) Next End Sub
Formula
The generating function given by Comtet and Fiolet is incorrect.
a(n) = coefficient of t^n*u^(n-1) in Product_{i,j>=0,(i,j)<>(0,1)} (1 - t^i*u^(i+j-1))^(-1). - Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008
Extensions
More terms from Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008