cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003275 Values of phi(k) when phi(k) = phi(k+1).

This page as a plain text file.
%I A003275 M1874 #65 Feb 16 2025 08:32:27
%S A003275 1,2,8,48,80,96,128,240,288,480,1008,1200,1296,1440,1728,2592,2592,
%T A003275 4800,5600,6480,8640,11040,12480,14976,19008,19200,22464,24320,24576,
%U A003275 21120,28416,27840,25920,32000,32768,36000,47520,52992,60480,59904,79200,89280,96768
%N A003275 Values of phi(k) when phi(k) = phi(k+1).
%C A003275 In other words, consider k = 1,2,3,4,..., and if phi(k) = phi(k+1), add phi(k) to the sequence.
%D A003275 Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B36, pp. 138-142.
%D A003275 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A003275 Amiram Eldar, <a href="/A003275/b003275.txt">Table of n, a(n) for n = 1..10755</a> (calculated from the b-file at A001274; terms 1..2567 from T. D. Noe)
%H A003275 Kathryn Miller, <a href="/A003275/a003275.pdf">The equation phi(n) = phi(n+1)</a>, Unpublished M.S., ND..
%H A003275 Kathryn Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000. Unpublished, 1972. [ See <a href="http://dx.doi.org/10.1090/S0025-5718-73-99703-2">Review</a>, Math. Comp., Vol. 27, p. 447-448, 1973 ].
%H A003275 Kathryn Miller, <a href="/A003275/a003275_1.pdf">Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000</a>, Mathematics of Computation 27 (1973), 47-48. (Annotated scanned copy)
%H A003275 Leo Moser, <a href="http://www.jstor.org/stable/2305815">Some equations involving Euler's totient function</a>, Amer. Math. Monthly, 56 (1949), 22-23.
%H A003275 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>.
%F A003275 a(n) = A000010(A001274(n)). - _Reinhard Zumkeller_, May 20 2014
%t A003275 Cases[Split[Table[EulerPhi[k],{k,1,50000}]],{_,_}][[1;;27,1]] (* _Jean-François Alcover_, Mar 20 2011 *)
%t A003275 #[[1]]&/@Select[Partition[EulerPhi[Range[80000]],2,1],#[[1]]==#[[2]]&] (* _Harvey P. Dale_, Oct 03 2012 *)
%t A003275 SequenceCases[EulerPhi[Range[200000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Mar 05 2019 *)
%o A003275 (Haskell)
%o A003275 a003275 = a000010 . fromIntegral . a001274
%o A003275 -- _Reinhard Zumkeller_, May 20 2014
%o A003275 (PARI) lista(lim) = my(p1 = 1, p2); for(k = 2, lim, p2 = eulerphi(k); if(p1 == p2, print1(p1, ", ")); p1 = p2); \\ _Amiram Eldar_, Nov 27 2024
%Y A003275 Cf. A000010, A001274.
%K A003275 nonn,nice
%O A003275 1,2
%A A003275 _N. J. A. Sloane_