This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003276 M3000 #36 Nov 29 2023 17:03:27 %S A003276 1,3,15,104,495,975,22935,32864,57584,131144,491535,2539004,3988424, %T A003276 6235215,7378371,13258575,17949434,25637744,26879684,29357475, %U A003276 32235735,41246864,48615735,184611375,229944855,257278724,290849624,429461864,550666515,671054835,706075095 %N A003276 Numbers k such that the multiplicative group of residues prime to k, M_k, is isomorphic to M_{k+1}. %D A003276 K. Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000. Unpublished, 1972. [Cf. Math. Comp., Vol. 27, p. 447, 1973.] %D A003276 D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 225. %D A003276 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003276 P. J. Cameron and D. A. Preece, <a href="http://www.maths.qmul.ac.uk/~pjc/csgnotes/lambda.pdf">Notes on primitive lambda-roots</a>. %H A003276 K. Miller, <a href="/A003275/a003275.pdf">The equation phi(n) = phi(n+1)</a>, Unpublished M.S., ND. %H A003276 K. Miller, <a href="/A003275/a003275_1.pdf">Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000</a>, Mathematics of Computation 27 (1973), 47-48. (Annotated scanned copy) %o A003276 (PARI) {my(z=znstar(1));for(n=1,10^10,my(z1=znstar(n+1)); if(z[1]==z1[1]&&z[2]==z1[2],print1(n,", "));z=z1;); } \\ _Joerg Arndt_, Mar 17 2016 %o A003276 (PARI) list(lim)=my(v=List(),old=[1,[]]); forfactored(n=2,lim\1+1, my(cur=znstar(n)[1..2]); if(old==cur, listput(v,n[1]-1)); old=cur); Vec(v) \\ _Charles R Greathouse IV_, Jul 17 2022 %Y A003276 Subsequence of A001274. %K A003276 nonn,nice %O A003276 1,2 %A A003276 _N. J. A. Sloane_ %E A003276 More terms from _David W. Wilson_