This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003290 M4119 #28 Dec 26 2021 20:42:10 %S A003290 1,6,18,50,156,508,1724,6018,21440,77632,284706,1055162,3944956, %T A003290 14858934,56325420,214698578,822373244,3163606784,12217121138, %U A003290 47343356398,184038696776,717456797490,2804219712064,10986639618642 %N A003290 Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (0,2). %C A003290 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. %D A003290 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003290 D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352. %H A003290 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a> %Y A003290 Cf. A001335, A003289, A003291, A005549, A005550, A005551, A005552, A005553. %K A003290 nonn,walk,more %O A003290 2,2 %A A003290 _N. J. A. Sloane_ %E A003290 More terms and title improved by _Sean A. Irvine_, Feb 13 2016 %E A003290 a(23)-a(25) from _Bert Dobbelaere_, Jan 15 2019