This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003318 M1052 #59 Oct 22 2023 00:16:41 %S A003318 1,2,4,7,12,18,28,39,55,74,100,127,167,208,261,322,399,477,581,686, %T A003318 820,967,1142,1318,1545,1778,2053,2347,2697,3048,3486,3925,4441,4986, %U A003318 5610,6250,7024,7799,8680,9604,10673,11743,13008,14274,15718,17239,18937,20636 %N A003318 a(n+1) = 1 + a( floor(n/1) ) + a( floor(n/2) ) + ... + a( floor(n/n) ). %C A003318 Partial sums of A003238. - _Emeric Deutsch_, Dec 17 2014 %D A003318 M. K. Goldberg and É. M. Livshits, Minimal universal trees. (Russian) Mat. Zametki 4 1968 371-379. %D A003318 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A003318 R. C. Read, personal communication. %H A003318 Joerg Arndt, <a href="/A003318/b003318.txt">Table of n, a(n) for n = 1..1000</a> %H A003318 M. K. Gol'dberg and É. M. Livshits, <a href="http://dx.doi.org/10.1007/BF01116454">On minimal universal trees</a>, Mathematical notes of the Academy of Sciences of the USSR, September 1968, Volume 4, Issue 3, pp 713-717, translated from Matematicheskie Zametki, Vol. 4, No. 3, pp. 371-379, September, 1968. %H A003318 R. C. Read, <a href="/A003318/a003318.pdf">Letter to N. J. A. Sloane and notes, May 1974</a> %F A003318 G.f. A(x) satisfies: A(x) = (x/(1 - x)) * (1 + Sum_{k>=1} (1 - x^k) * A(x^k)). - _Ilya Gutkovskiy_, Feb 25 2020 %p A003318 A[1]:= 1; %p A003318 for n from 1 to 99 do %p A003318 A[n+1]:= 1 + add(A[floor(n/k)],k=1..n) %p A003318 od: %p A003318 seq(A[n],n=1..100); # _Robert Israel_, Aug 24 2014 %t A003318 a[1]=1;a[n_]:=1+Sum[a[Floor[(n-1)/k]],{k,n-1}] %t A003318 Array[a,50] (* _Giorgos Kalogeropoulos_, Mar 31 2021 *) %o A003318 (PARI) N=1001; %o A003318 v=vector(N,n,n==1); %o A003318 for(n=1, N-1, v[n+1]=1 + sum(k=1, n, v[floor(n/k)]) ); %o A003318 for(n=1, N, print(n," ",v[n])); \\ b-file %o A003318 \\ _Joerg Arndt_, Aug 25 2014 %o A003318 (Python) %o A003318 from functools import lru_cache %o A003318 @lru_cache(maxsize=None) %o A003318 def A003318(n): %o A003318 if n == 0: %o A003318 return 1 %o A003318 c, j = n+1, 1 %o A003318 k1 = (n-1)//j %o A003318 while k1 > 1: %o A003318 j2 = (n-1)//k1 + 1 %o A003318 c += (j2-j)*A003318(k1) %o A003318 j, k1 = j2, (n-1)//j2 %o A003318 return c-j # _Chai Wah Wu_, Mar 31 2021 %Y A003318 Cf. A003238 (first differences). %K A003318 nonn %O A003318 1,2 %A A003318 _N. J. A. Sloane_