cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003327 Numbers that are the sum of 4 positive cubes in 1 or more way.

This page as a plain text file.
%I A003327 #42 Jun 14 2025 02:26:20
%S A003327 4,11,18,25,30,32,37,44,51,56,63,67,70,74,81,82,88,89,93,100,107,108,
%T A003327 119,126,128,130,135,137,142,144,145,149,154,156,161,163,168,180,182,
%U A003327 187,191,193,198,200,205,206,217,219,224,226,233,240,243,245,252,254
%N A003327 Numbers that are the sum of 4 positive cubes in 1 or more way.
%C A003327 It is conjectured that every number greater than 7373170279850 is in this sequence. [See the paper of the same name. - _T. D. Noe_, May 25 2017] - _Charles R Greathouse IV_, Jan 14 2017
%C A003327 As the order of addition doesn't matter we can assume terms are in increasing order. - _David A. Corneth_, Aug 01 2020
%H A003327 David A. Corneth, <a href="/A003327/b003327.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H A003327 Jean-Marc Deshouillers, François Hennecart, Bernard Landreau, <a href="https://doi.org/10.1090/S0025-5718-99-01116-3">7373170279850</a>, Math. Comp. 69 (2000), pp. 421-439. Appendix by I. Gusti Putu Purnaba.
%H A003327 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicNumber.html">Cubic Number.</a>
%e A003327 From _David A. Corneth_, Aug 01 2020: (Start)
%e A003327 3888 is in the sequence as 3888 = 6^3 + 6^3 + 12^3 + 12^3.
%e A003327 7729 is in the sequence as 7729 = 2^3 + 4^3 + 14^3 + 17^3.
%e A003327 7875 is in the sequence as 7875 = 5^3 + 10^3 + 15^3 + 15^3. (End)
%o A003327 (PARI) list(lim)=my(v=List(),e=1+lim\1,x='x,t); t=sum(i=1,sqrtnint(e-4,3), x^i^3, O(x^e))^4; for(n=4,lim, if(polcoeff(t,n)>0, listput(v,n))); Vec(v) \\ _Charles R Greathouse IV_, Jan 14 2017
%Y A003327 Cf. A025403, A057905 (complement), A025411 (distinct).
%Y A003327 A###### (x, y): Numbers that are the form of x nonzero y-th powers.
%Y A003327 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
%K A003327 nonn,easy
%O A003327 1,1
%A A003327 _N. J. A. Sloane_
%E A003327 More terms from _Eric W. Weisstein_